Electronic Supplementary Information

Inclusion of Potassium 4,4’-Diphenyldicarboxylate into β-Cyclodextrin: The Design and Synthesis of an Organic Secondary Building Unit

José A. Fernandes,* Filipe A. Almeida Paz,* Susana S. Braga, Paulo J. Ribeiro-Claro, and João Rocha

A contribution from

Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

To whom correspondence should be addressed:
Dr. José A. Fernandes or Dr. Filipe A. Almeida Paz
Department of Chemistry, CICECO
University of Aveiro
3810-193 Aveiro
Portugal

E-mails: jafernandes@ua.pt or filipe.paz@ua.pt
FAX: +351 234 370084
Telephone: +351 234 370200 (Extensions 24766 or 23553)
Contents

1 – Synthesis and Structural Characterisation of K_2bpdc

1.1 – Synthesis ... S3

1.2 – Vibrational Spectroscopy and Theoretical Calculations

 2.2.1–FTIR-ATR ... S4

 2.2.2–FT-Raman ... S5

2 – Structural Characterisation of Compounds 1 and 2

 2.1 – Thermogravimetric Analysis ... S6

 2.2 – FTIR-ATR ... S7

 2.3 – FT-Raman ... S8

3 – References ... S9
1 – Synthesis and Structural Characterisation of K$_2$bpdc

1.1 – Synthesis

This compound was used for the preparation of the NMR solutions and for comparison purposes in the vibrational spectroscopy studies. It was prepared as described for the preparation of K$_2$bpdc solution, pH=7.5. A pale green powder was obtained by lyophilisation followed by drying in a desiccator.

Selected FT-IR data (ATR, in cm$^{-1}$): 1581s, 1536s, 1384mbr, 1352sh, 1180w, 1121w, 1097w, 1009w, 837m, 761w, 696m, 677m, 512w, 465w and 394m. No bands were detected above 1600 cm$^{-1}$.

Selected FT-Raman data (in cm$^{-1}$): 3072m, 3046, 1605vs, 1418m, 1281m, 1207w, 1136m, 849m, 824w, 796w, 752w, 628w, 520w, 408w, 329w, 326w and 236.
1.2 – Vibrational Spectroscopy and Theoretical Calculations

1.2.1 – FTIR-ATR

Figure S1. Comparison between the experimental (black) FT-IR spectrum of K$_2$bpced and the simulated (red) one for the bpde$^{2-}$ anion. Calculated at B3LYP/6-31G level with the correction factor 0.9627.1
1.2.2–FTIR-Raman

Figure S2. Comparison between the experimental (black) FT-Raman spectrum of K₂bpcd and the simulated (red) one for the bpdc⁻² anion. Calculated at the B3LYP/6-31G level with the correction factor 0.9627.¹
2 – Structural Characterization of 1 and 2

2.1 – Thermogravimetric Analysis

Figure S3. TGA of compounds 1 (black) and 2 (red).
2.2 – FTIR-ATR

Figure S4. FT-IR ATR spectra of compounds 1 and 2. The spectra of β-CD and K₂bpdc are also represented for comparative purposes. The two latter spectra were scaled and subject to an offset for clarity purposes.
Figure S5. FT-Raman spectra of compounds 1 and 2. The spectra of β-CD and K₂bpdc are also represented for comparison.
3 – References