Electronic Supporting Information

Supporting Information for ‘Plasma Deposited Metal Schiff-base Compounds as Antimicrobials’

Neil Poulter,a Matthew Donaldson,a Geraldine Mulley,a,b Luis Duque,a Nicholas Waterfield,b Alex G. Shard,c Steve Spencer,c A.Tobias A. Jenkinsa and Andrew L. Johnsona*

a Departments of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom.
b Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, United Kingdom.
c National Physical Laboratory, Teddington, London, U.K.

*Author to whom correspondence should be addressed: a.l.johnson@bath.ac.uk

Supporting Information

Structure solution refinement

Experimental details relating to the single-crystal X-ray crystallographic studies are summarized in table 2. For both structures, data were collected on a Nonius Kappa CCD diffractometer at 150(2) K using Mo-K\textsubscript{\textalpha} radiation (\(\lambda = 0.71073\) Å). Structure solution and refinements were performed using SHELX86i and SHELX97ii software, respectively. Corrections for absorption were made in all cases. For all complexes, hydrogen atoms were included at calculated positions.
Crystal structure data for ZSB and CSB compounds

Table S1: Crystallographic data for the complexes ZSB and CSB.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ZSB</th>
<th>CSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$C_{20}H_{20}ZnN_2O_2$</td>
<td>$C_{20}H_{20}CuN_2O_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>385.75</td>
<td>383.92</td>
</tr>
<tr>
<td>T/K</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P\bar{1}$</td>
<td>$P2_1/c$</td>
</tr>
<tr>
<td>a / Å</td>
<td>9.8230(5)</td>
<td>10.7130(2)</td>
</tr>
<tr>
<td>b / Å</td>
<td>10.3560(6)</td>
<td>7.3560(10)</td>
</tr>
<tr>
<td>c / Å</td>
<td>10.7400(6)</td>
<td>22.3240(4)</td>
</tr>
<tr>
<td>α / °</td>
<td>63.590(3)</td>
<td></td>
</tr>
<tr>
<td>β / °</td>
<td>76.146(3)</td>
<td>102.8980(10)</td>
</tr>
<tr>
<td>γ / °</td>
<td>70.354(2)</td>
<td></td>
</tr>
<tr>
<td>U / Å³</td>
<td>916.31(9)</td>
<td>1714.85(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>D_c / g cm⁻³</td>
<td>1.398</td>
<td>1.487</td>
</tr>
<tr>
<td>μ / mm⁻¹</td>
<td>1.355</td>
<td>1.289</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>400</td>
<td>796</td>
</tr>
<tr>
<td>Crystal size / mm</td>
<td>0.30, 0.10, 0.10</td>
<td>0.2, 0.17, 0.13</td>
</tr>
<tr>
<td>Theta range / °</td>
<td>3.95 to 27.61</td>
<td>8.54 to 28.28</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>11966</td>
<td>24844</td>
</tr>
<tr>
<td>Reflections ([I>2\sigma(I)])</td>
<td>4188 ([R(\text{int}) = 0.0705])</td>
<td>4117 ([R(\text{int}) = 0.1017])</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4188/0/226</td>
<td>4117/0/227</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.105</td>
<td>1.039</td>
</tr>
<tr>
<td>Final $R1$ (wR_2) ([I>2\sigma(I)])</td>
<td>0.0527 (0.1258)</td>
<td>0.0339 (0.0856)</td>
</tr>
<tr>
<td>Final $R1$ (wR_2) (all data)</td>
<td>0.0741 (0.1400)</td>
<td>0.0439 (0.0910)</td>
</tr>
<tr>
<td>Largest diff. peak and hole, eÅ⁻³</td>
<td>1.145 and -0.661</td>
<td>0.336 and -0.399</td>
</tr>
</tbody>
</table>
Electronic Supporting Information

Selected Bond lengths (Å) and angles (°)

<table>
<thead>
<tr>
<th></th>
<th>ZSB</th>
<th>CSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-O(1)</td>
<td>1.988(2)</td>
<td>Cu(1)-O(1)</td>
</tr>
<tr>
<td>Zn(1)-O(2)</td>
<td>2.085(2)</td>
<td>Cu(1)-O(2)</td>
</tr>
<tr>
<td>Zn(1)-N(1)</td>
<td>2.051(3)</td>
<td>Cu(1)-N(1)</td>
</tr>
<tr>
<td>Zn(1)-N(2)</td>
<td>2.070(3)</td>
<td>Cu(1)-N(2)</td>
</tr>
<tr>
<td>Zn(1)-O(2) #</td>
<td>2.048(2)</td>
<td></td>
</tr>
<tr>
<td>O(1)-Zn(1)-O(2)</td>
<td>171.91(9)</td>
<td>O(1)-Cu(1)-O(2)</td>
</tr>
<tr>
<td>N(1)-Zn(1)-N(2)</td>
<td>110.49(10)</td>
<td>N(1)-Cu(1)-N(2)</td>
</tr>
<tr>
<td>N(1)-Zn(1)-O(2) #</td>
<td>122.65(11)</td>
<td>O(1)-Cu(1)-N(1)</td>
</tr>
<tr>
<td>N(2)-Zn(1)-O(2) #</td>
<td>125.62(10)</td>
<td>O(2)-Cu(2)-N(2)</td>
</tr>
<tr>
<td>O(1)-Zn(1)-N(1)</td>
<td>91.27(10)</td>
<td>O(1)-Cu(2)-N(2)</td>
</tr>
<tr>
<td>C(7)-N(1)</td>
<td>1.290(4)</td>
<td>C(7)-N(1)</td>
</tr>
<tr>
<td>C(17)-N(2)</td>
<td>1.287(4)</td>
<td>C(27)-N(2)</td>
</tr>
<tr>
<td>Zn(1)-O(2)-Zn(1) #</td>
<td>103.79(9)</td>
<td></td>
</tr>
</tbody>
</table>

| | # 1-x+2,-y,-z |

Table S2: Selected Bond Distances (Å) and Bond Angles (deg) for the Complexes ZSB and CSB. a
Symmetry transformations used to generate equivalent atoms: # 1 -x+2,-y,-z
Figure S1: XPS survey scan of pp-ZSB 1/40 30 min deposition
MIC data for ZSB and CSB compounds

Staphylococcus aureus MSSA

A) ZSB, Zn acetate & SB ligand

B) CSB, Cu acetate & SB ligand

Pseudomonas aeruginosa PA01

C) ZSB, Zn acetate & SB ligand

D) CSB, Cu acetate & SB ligand

Figure S2: Bacterial density – concentration plots used for determination of minimum inhibition concentration of compounds.
Figures 3. FTIR of ZSB and CSB monomers and plasma deposited 1/40 films.

1 Sheldrick, G. M. SHELX-86, Computer Program for Crystal Structure Determination; University of Göttingen: Germany, 1986.