Supporting Information (SI) for:

Synthesis and stability of 2-tetrazenium salts

by Carles Miró Sabaté and Henri Delalou

Table 1 Calculated, scaled and measured infrared (IR) and Raman (Ra) frequencies (>600 cm\(^{-1}\)) with intensity (IR) and activity (Ra) values for N\(_4\)Me\(_4\) (I).

<table>
<thead>
<tr>
<th></th>
<th>(v_{\text{unscl}}) (cm(^{-1})) (^a)</th>
<th>(v_{\text{scl}}) (cm(^{-1})) (^b)</th>
<th>(I_{\text{calc}}/A_{\text{calc}}) IR/Ra (^c)</th>
<th>(v_{\text{meas}}) (IR, cm(^{-1})) (^d)</th>
<th>(v_{\text{meas}}) (Ra, cm(^{-1})) (^e)</th>
<th>Assignment (^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>864</td>
<td>830</td>
<td>25/0</td>
<td>822(m)</td>
<td>all C: (v(C-N) + v(N-N))</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>908</td>
<td>872</td>
<td>0/11</td>
<td>891(w)</td>
<td>897(21)</td>
<td>C2/C3: (v(C-N))</td>
</tr>
<tr>
<td>3</td>
<td>1035</td>
<td>994</td>
<td>281/0</td>
<td>997(vs)</td>
<td>(v(N-N) + \text{all C: } \gamma(C-H))</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1054</td>
<td>1013</td>
<td>0/4</td>
<td>1037(w)</td>
<td>1036(1)</td>
<td>(v(N-N) + \text{C2/C3: } \gamma(C-H))</td>
</tr>
<tr>
<td>5</td>
<td>1056</td>
<td>1015</td>
<td>26/0</td>
<td>1090(1)</td>
<td>all C: (\omega(C-H))</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1094</td>
<td>1051</td>
<td>0/2</td>
<td>1037(w)</td>
<td>1036(1)</td>
<td>(v(N-N) + \text{C2/C3: } \gamma(C-H))</td>
</tr>
<tr>
<td>7</td>
<td>1113</td>
<td>1069</td>
<td>0/5</td>
<td>1091(vw)</td>
<td>(\omega(C-H))</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1115</td>
<td>1071</td>
<td>6/0</td>
<td>1115(1)</td>
<td>(\omega(C-H))</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1163</td>
<td>1117</td>
<td>39/0</td>
<td>1141(m)</td>
<td>(\omega(C-H))</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1165</td>
<td>1119</td>
<td>0/25</td>
<td>1142(25)</td>
<td>(\omega(C-H))</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1273</td>
<td>1223</td>
<td>26/0</td>
<td>(v(N-N) + v(C-N))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1294</td>
<td>1243</td>
<td>0/3</td>
<td>1244(w)</td>
<td>1240(1)</td>
<td>(v(N-N) + v(C-N))</td>
</tr>
<tr>
<td>13</td>
<td>1315</td>
<td>1264</td>
<td>83/0</td>
<td>1277(m)</td>
<td>(v(N-N) + v(C-N))</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1331</td>
<td>1279</td>
<td>0/5</td>
<td>1290(1)</td>
<td>(v(N-N) + v(C-N))</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1435</td>
<td>1379</td>
<td>0/17</td>
<td>(\gamma(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1437</td>
<td>1381</td>
<td>2/0</td>
<td>(\gamma(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1460</td>
<td>1403</td>
<td>0/20</td>
<td>1399(vw)</td>
<td>1395(9)</td>
<td>(\gamma(C-H))</td>
</tr>
<tr>
<td>18</td>
<td>1461</td>
<td>1404</td>
<td>1/0</td>
<td>(\gamma(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1476</td>
<td>1418</td>
<td>0/18</td>
<td>1415(27)</td>
<td>C2/C3: (\omega(C-H))</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1476</td>
<td>1418</td>
<td>20/0</td>
<td>C2/C3: (\omega(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1487</td>
<td>1429</td>
<td>0/23</td>
<td>(\delta(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1489</td>
<td>1431</td>
<td>23/0</td>
<td>(\delta(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1505</td>
<td>1446</td>
<td>27/0</td>
<td>1441(w)</td>
<td>(\delta(C-H))</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1507</td>
<td>1448</td>
<td>0/6</td>
<td>1443(15)</td>
<td>(\delta(C-H))</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1516</td>
<td>1457</td>
<td>0/11</td>
<td>(\delta(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1518</td>
<td>1459</td>
<td>45/0</td>
<td>(\delta(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1558</td>
<td>1497</td>
<td>0/185</td>
<td>1469(m)</td>
<td>1473(100)</td>
<td>(v(N2-N3) + \text{all C: } \delta(C-H))</td>
</tr>
<tr>
<td>28</td>
<td>2971</td>
<td>2856</td>
<td>213/3</td>
<td>2822(w)</td>
<td>C2/C3: (v(C-H))</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2972</td>
<td>2856</td>
<td>2/312</td>
<td>2822(31)</td>
<td>C2/C3: (v(C-H))</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2986</td>
<td>2870</td>
<td>154/1</td>
<td>C1/C4: (v(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2987</td>
<td>2872</td>
<td>0/443</td>
<td>2857(w)</td>
<td>C1/C4: (v(C-H))</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3092</td>
<td>2972</td>
<td>28/92</td>
<td>2853(33)</td>
<td>C3: (v(C-H))</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3093</td>
<td>2973</td>
<td>28/93</td>
<td>2883(29)</td>
<td>C2: (v(C-H))</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3103</td>
<td>2982</td>
<td>1/221</td>
<td>2962(72)</td>
<td>C1/C4: (v_{\text{as}}(C-H))</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3103</td>
<td>2982</td>
<td>61/3</td>
<td>2961(w)</td>
<td>C1/C4: (v_{\text{as}}(C-H))</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3147</td>
<td>3025</td>
<td>1/68</td>
<td>2999(22)</td>
<td>(v_{\text{as}}(C-H))</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>3147</td>
<td>3025</td>
<td>21/2</td>
<td>2999(vw)</td>
<td>(v_{\text{as}}(C-H))</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3149</td>
<td>3027</td>
<td>31/1</td>
<td>(v_{\text{as}}(C-H))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3149</td>
<td>3027</td>
<td>1/187</td>
<td>3088(13)</td>
<td>(v_{\text{as}}(C-H))</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Calculated (unscaled) frequencies (B3LYP/6-311+G(d,p)); \(^b\) Calculated frequencies (B3LYP/6-311+G(d,p)) scaled by 0.9613; \(^c\) Calculated IR intensities and Raman activities; \(^d\) Experimental IR frequencies and intensities in () brackets; \(^e\) Experimental Raman frequencies and activities in () brackets; \(^f\) Approximate description of vibrational modes: \(v\) = stretching, \(\delta\) = in-plane bending, \(\gamma\) = out-of-plane bending, \(\omega\) = in-plane rocking, \(\tau\) = torsion; as = asymmetric and s = symmetric.
Table 2 Calculated, scaled and measured (averaged values for compounds 2 and 3) infrared (IR) and Raman (Ra) frequencies (>600 cm⁻¹) with intensity (IR) and activity (Ra) values for the N₄Me₂H⁺ cation.

| | v_unscal (cm⁻¹) a | v_scal (cm⁻¹) b | I_cal/cm calc | ν_m (IR, cm⁻¹) c | ν_RA (Ra, cm⁻¹) d | Mode Assignment /
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>619</td>
<td>595</td>
<td>35/2</td>
<td>620 (s)</td>
<td>620 (1)</td>
<td>γ(N(2–N3))</td>
</tr>
<tr>
<td>2</td>
<td>806</td>
<td>774</td>
<td>3/3</td>
<td>675 (w)</td>
<td>ν(C–N) + ν(N–N)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>896</td>
<td>861</td>
<td>3/8</td>
<td>815 (w)</td>
<td>820 (3)</td>
<td>ν(C–N) + ν(N–N)</td>
</tr>
<tr>
<td>4</td>
<td>939</td>
<td>902</td>
<td>19/2</td>
<td>900 (w)</td>
<td>900 (15)</td>
<td>ν(N3–N4) + ν(N1–C2)</td>
</tr>
<tr>
<td>5</td>
<td>984</td>
<td>945</td>
<td>9/6</td>
<td>945 (w)</td>
<td>950 (2)</td>
<td>C3/C4: ν(C–N) + τ(C–H)</td>
</tr>
<tr>
<td>6</td>
<td>1052</td>
<td>1011</td>
<td>4/1</td>
<td>1000 (w)</td>
<td>1005 (3)</td>
<td>C3/C4: γ(C–H)</td>
</tr>
<tr>
<td>7</td>
<td>1063</td>
<td>1021</td>
<td>9/2</td>
<td></td>
<td></td>
<td>C1/C2: γ(C–H)</td>
</tr>
<tr>
<td>8</td>
<td>1111</td>
<td>1068</td>
<td>0/2</td>
<td>1050 (w)</td>
<td></td>
<td>C1/C2: τ(C–H)</td>
</tr>
<tr>
<td>9</td>
<td>1137</td>
<td>1092</td>
<td>7/17</td>
<td>1070 (w)</td>
<td>1070 (1)</td>
<td>C1/C2: γ(C–H)</td>
</tr>
<tr>
<td>10</td>
<td>1156</td>
<td>1111</td>
<td>1/1</td>
<td>1105 (w)</td>
<td></td>
<td>C1/C2: γ(C–H)</td>
</tr>
<tr>
<td>11</td>
<td>1171</td>
<td>1125</td>
<td>1/1</td>
<td></td>
<td></td>
<td>C3/C4: γ(C–H)</td>
</tr>
<tr>
<td>12</td>
<td>1199</td>
<td>1152</td>
<td>35/1</td>
<td>1160 (m)</td>
<td></td>
<td>ν(N1–N2) + C3/C4: γ(C–H)</td>
</tr>
<tr>
<td>13</td>
<td>1260</td>
<td>1211</td>
<td>1/2</td>
<td>1180 (w)</td>
<td></td>
<td>C3/C4: γ(C–H)</td>
</tr>
<tr>
<td>14</td>
<td>1315</td>
<td>1264</td>
<td>3/6</td>
<td>1230 (w)</td>
<td></td>
<td>C1/C2: ν(C–N)</td>
</tr>
<tr>
<td>15</td>
<td>1371</td>
<td>1317</td>
<td>9/14</td>
<td>1290 (15)</td>
<td></td>
<td>δ(N4–H)</td>
</tr>
<tr>
<td>16</td>
<td>1422</td>
<td>1366</td>
<td>69/16</td>
<td>1360 (s)</td>
<td></td>
<td>ν(N2–N3) + δ(N4–H)</td>
</tr>
<tr>
<td>17</td>
<td>1427</td>
<td>1371</td>
<td>5/1</td>
<td></td>
<td>γ(N4–H)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1439</td>
<td>1383</td>
<td>74/6</td>
<td>1380 (m)</td>
<td>1380 (50)</td>
<td>C1/C2: γ(C–H)</td>
</tr>
<tr>
<td>19</td>
<td>1441</td>
<td>1385</td>
<td>2/2</td>
<td></td>
<td></td>
<td>C1/C2: γ(C–H)</td>
</tr>
<tr>
<td>20</td>
<td>1450</td>
<td>1393</td>
<td>21/10</td>
<td></td>
<td></td>
<td>C3/C4: γ(C–H)</td>
</tr>
<tr>
<td>21</td>
<td>1470</td>
<td>1413</td>
<td>5/2</td>
<td>1400 (w)</td>
<td></td>
<td>C3/C4: γ(C–H)</td>
</tr>
<tr>
<td>22</td>
<td>1477</td>
<td>1419</td>
<td>28/9</td>
<td></td>
<td>C2: δ(C–H)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1486</td>
<td>1428</td>
<td>2/10</td>
<td></td>
<td>C1/C2: δ(C–H)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1487</td>
<td>1429</td>
<td>15/1</td>
<td>1430 (w)</td>
<td></td>
<td>C3/C4: δ(C–H)</td>
</tr>
<tr>
<td>25</td>
<td>1489</td>
<td>1431</td>
<td>1/7</td>
<td></td>
<td>C1/C2: δ(C–H)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1490</td>
<td>1432</td>
<td>2/16</td>
<td></td>
<td></td>
<td>C3/C4: δ(C–H)</td>
</tr>
<tr>
<td>27</td>
<td>1501</td>
<td>1442</td>
<td>21/17</td>
<td></td>
<td></td>
<td>C3/C4: δ(C–H)</td>
</tr>
<tr>
<td>28</td>
<td>1508</td>
<td>1449</td>
<td>15/13</td>
<td></td>
<td></td>
<td>C1/C2: δ(C–H)</td>
</tr>
<tr>
<td>29</td>
<td>1513</td>
<td>1454</td>
<td>31/4</td>
<td></td>
<td></td>
<td>C3/C4: δ(C–H)</td>
</tr>
<tr>
<td>30</td>
<td>1564</td>
<td>1503</td>
<td>260/1</td>
<td>1490 (m)</td>
<td>ν(N1–N2) + ν(N2–N3)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3055</td>
<td>2936</td>
<td>5/47</td>
<td></td>
<td>C1/C2: ν(C–H)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3061</td>
<td>2942</td>
<td>13/326</td>
<td>2920 (w)</td>
<td></td>
<td>C1/C2: ν(C–H)</td>
</tr>
<tr>
<td>33</td>
<td>3086</td>
<td>2966</td>
<td>1/3</td>
<td></td>
<td>C3/C4: ν(C–H)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3090</td>
<td>2970</td>
<td>2/282</td>
<td></td>
<td>C3/C4: ν(C–H)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3124</td>
<td>3003</td>
<td>4/40</td>
<td>2955 (w)</td>
<td>2965 (15)</td>
<td>C2: νas(C–H)</td>
</tr>
<tr>
<td>36</td>
<td>3133</td>
<td>3011</td>
<td>4/97</td>
<td>3005 (10)</td>
<td></td>
<td>C1: νas(C–H)</td>
</tr>
<tr>
<td>37</td>
<td>3184</td>
<td>3060</td>
<td>6/36</td>
<td>3020 (w)</td>
<td>3020 (5)</td>
<td>C1/C2: νas(C–H)</td>
</tr>
<tr>
<td>38</td>
<td>3186</td>
<td>3062</td>
<td>1/11</td>
<td></td>
<td></td>
<td>C3/C4: νas(C–H)</td>
</tr>
<tr>
<td>39</td>
<td>3187</td>
<td>3063</td>
<td>1/71</td>
<td></td>
<td>C1/C2: νas(C–H)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3190</td>
<td>3066</td>
<td>1/128</td>
<td></td>
<td></td>
<td>C3/C4: νas(C–H)</td>
</tr>
<tr>
<td>41</td>
<td>3199</td>
<td>3075</td>
<td>1/19</td>
<td></td>
<td></td>
<td>C3/C4: νas(C–H)</td>
</tr>
<tr>
<td>42</td>
<td>3199</td>
<td>3075</td>
<td>1/51</td>
<td></td>
<td></td>
<td>C3/C4: νas(C–H)</td>
</tr>
<tr>
<td>43</td>
<td>3367</td>
<td>3236</td>
<td>35/58</td>
<td>3080 (w)</td>
<td>ν(N4–H)</td>
<td></td>
</tr>
</tbody>
</table>

a Calculated (unscaled) frequencies (B3LYP/6-311+G(d,p)); b Calculated frequencies (B3LYP/6-311+G(d,p)) scaled by 0.9613; c Calculated IR intensities and Raman activities; d Experimental IR frequencies and intensities in () brackets; e Experimental Raman frequencies and activities in () brackets; f Approximate description of vibrational modes: ν = stretching, δ = in-plane bending, γ = out-of-plane bending, ω = in-plane rocking, τ = torsion; as = asymmetric and s = symmetric.
Table 3 Calculated, scaled and measured infrared (IR) and Raman (Ra) frequencies (>600 cm\(^{-1}\)) with intensity (IR) and activity (Ra) values for the \(\text{N}_4\text{Me}_5^+\) cation.

<table>
<thead>
<tr>
<th>(v) unscal (cm(^{-1})) (a)</th>
<th>(\nu) scal (cm(^{-1})) (b)</th>
<th>(I_{\text{calc}}/A_{\text{calc}}) IR/Ra (c)</th>
<th>(v) meas (IR, cm(^{-1})) (d)</th>
<th>(v) meas (Ra, cm(^{-1})) (e)</th>
<th>Mode Assignment (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>812</td>
<td>780</td>
<td>2/9</td>
<td>775(m)</td>
<td>777(9)</td>
</tr>
<tr>
<td>2</td>
<td>913</td>
<td>877</td>
<td>10/5</td>
<td>820(w)</td>
<td>825(9)</td>
</tr>
<tr>
<td>3</td>
<td>956</td>
<td>919</td>
<td>10/6</td>
<td>908(m)</td>
<td>916(3)</td>
</tr>
<tr>
<td>4</td>
<td>978</td>
<td>940</td>
<td>13/6</td>
<td>948(m)</td>
<td>949(1)</td>
</tr>
<tr>
<td>5</td>
<td>1063</td>
<td>1021</td>
<td>9/1</td>
<td>968(m)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1124</td>
<td>1080</td>
<td>12/9</td>
<td>1049(w)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1157</td>
<td>1112</td>
<td>1/1</td>
<td>1101(m)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1161</td>
<td>1116</td>
<td>6/7</td>
<td>1113(w)</td>
<td>1106(5)</td>
</tr>
<tr>
<td>9</td>
<td>1256</td>
<td>1207</td>
<td>28/1</td>
<td>1139(w)</td>
<td>1145(3)</td>
</tr>
<tr>
<td>10</td>
<td>1274</td>
<td>1224</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1287</td>
<td>1237</td>
<td>6/1</td>
<td>1229(m)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1318</td>
<td>1266</td>
<td>1/5</td>
<td>1261(m)</td>
<td>1251(5)</td>
</tr>
<tr>
<td>13</td>
<td>1413</td>
<td>1358</td>
<td>73/25</td>
<td>1299(w)</td>
<td>1304(3)</td>
</tr>
<tr>
<td>14</td>
<td>1436</td>
<td>1380</td>
<td>91/8</td>
<td>1361(m)</td>
<td>1364(6)</td>
</tr>
<tr>
<td>15</td>
<td>1450</td>
<td>1393</td>
<td>15/9</td>
<td>1385(s)</td>
<td>1396(21)</td>
</tr>
<tr>
<td>16</td>
<td>1477</td>
<td>1419</td>
<td>24/8</td>
<td>1407(m)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1486</td>
<td>1428</td>
<td>5/9</td>
<td>1427(11)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1492</td>
<td>1434</td>
<td>1/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1502</td>
<td>1443</td>
<td>30/7</td>
<td>1439(w)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1504</td>
<td>1445</td>
<td>25/3</td>
<td>1444(9)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1529</td>
<td>1469</td>
<td>22/3</td>
<td>1461(m)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1556</td>
<td>1495</td>
<td>228/1</td>
<td>1482(m)</td>
<td>1475(37)</td>
</tr>
<tr>
<td>23</td>
<td>3060</td>
<td>2941</td>
<td>14/343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3089</td>
<td>2969</td>
<td>1/64</td>
<td>2840(11)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3097</td>
<td>2977</td>
<td>5/303</td>
<td>2945(w)</td>
<td>2945(92)</td>
</tr>
<tr>
<td>26</td>
<td>3123</td>
<td>3002</td>
<td>5/40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3129</td>
<td>3007</td>
<td>4/99</td>
<td>3010(w)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3183</td>
<td>3059</td>
<td>1/35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3185</td>
<td>3061</td>
<td>2/72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3186</td>
<td>3062</td>
<td>1/58</td>
<td>3008(100)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3196</td>
<td>3072</td>
<td>1/95</td>
<td>3018(86)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3203</td>
<td>3079</td>
<td>1/52</td>
<td>3071(w)</td>
<td></td>
</tr>
</tbody>
</table>

\(a\) Calculated (unscaled) frequencies (B3LYP/6-311+G(d,p)); \(b\) Calculated frequencies (B3LYP/6-311+G(d,p)) scaled by 0.9613; \(c\) Calculated IR intensities and Raman activities; \(d\) Experimental IR frequencies and intensities in () brackets; \(e\) Experimental Raman frequencies and activities in () brackets; \(f\) Approximate description of vibrational modes: \(\nu\) = stretching, \(\delta\) = in-plane bending, \(\gamma\) = out-of-plane bending, \(\omega\) = in-plane rocking, \(\tau\) = torsion; \(s\) = asymmetric and \(s\) = symmetric.
Table 4 Geometry of medium to strong hydrogen bonds in the crystal structure of dimethylammonium picrate.

<table>
<thead>
<tr>
<th>D–H•••A</th>
<th>D–H (Å)</th>
<th>H•••A (Å)</th>
<th>D•••A (Å)</th>
<th>D–H•••A (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N7–H5•••O8</td>
<td>0.798(4)</td>
<td>2.018(5)</td>
<td>2.776(5)</td>
<td>158.6(5)</td>
</tr>
<tr>
<td>N7–H5•••O14</td>
<td>0.798(4)</td>
<td>2.550(5)</td>
<td>3.096(7)</td>
<td>127.0(7)</td>
</tr>
<tr>
<td>N7–H6•••O1</td>
<td>0.880(7)</td>
<td>2.058(8)</td>
<td>2.886(5)</td>
<td>153.6(5)</td>
</tr>
<tr>
<td>N7–H6•••O7</td>
<td>0.880(7)</td>
<td>2.227(7)</td>
<td>2.832(6)</td>
<td>125.7(6)</td>
</tr>
<tr>
<td>N8–H13•••O1i</td>
<td>0.881(6)</td>
<td>1.877(5)</td>
<td>2.862(5)</td>
<td>148.1(4)</td>
</tr>
<tr>
<td>N8–H13•••O2i</td>
<td>0.881(6)</td>
<td>2.167(6)</td>
<td>2.900(8)</td>
<td>122.4(4)</td>
</tr>
<tr>
<td>N8–H14•••O8i</td>
<td>0.787(5)</td>
<td>2.013(5)</td>
<td>2.767(7)</td>
<td>160.4(4)</td>
</tr>
<tr>
<td>N8–H14•••O10i</td>
<td>0.787(5)</td>
<td>2.449(5)</td>
<td>2.985(5)</td>
<td>126.4(4)</td>
</tr>
</tbody>
</table>

Symmetry code: (i) 0.5+x, y, 1-z.

Table 5 Graph-set matrix for strong to medium hydrogen bonds in dimethylammonium picrate. First level motifs on-diagonal and second level graph-sets off-diagonal.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>N7–H5•••O8 (A)</td>
<td>D1,1(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7–H6•••O1 (B)</td>
<td>D2,2(5)</td>
<td>D1,1(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N8–H13•••O1 (C)</td>
<td>D2,2(5)</td>
<td>R2,1(6)</td>
<td>D1,1(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7–H6•••O7 (D)</td>
<td>D1,2(3)</td>
<td>D2,2(7)</td>
<td>D1,1(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N8–H13•••O7 (E)</td>
<td>D2,2(7)</td>
<td>D2,2(9)</td>
<td>R2,1(6)</td>
<td>D1,1(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N8–H14•••O8 (F)</td>
<td>D1,2(3)</td>
<td></td>
<td></td>
<td>D2,2(5)</td>
<td>D2,2(5)</td>
<td>D1,1(2)</td>
<td></td>
</tr>
<tr>
<td>N8–H14•••O10 (G)</td>
<td>D2,2(7)</td>
<td></td>
<td></td>
<td>D2,2(5)</td>
<td>D2,2(5)</td>
<td>R2,1(6)</td>
<td>D1,1(2)</td>
</tr>
</tbody>
</table>

Symmetry code: (i) 0.5+x, y, 1-z

Fig. 1 Optimized geometry and Mulliken charges in N₄Me₄ (1) (B3LYP/6-31+G(d,p)).
Fig. 2 Optimized geometry and Mulliken charges for the N₄Me₄H⁺ cation (B3LYP/6-31+G(d,p)).

Fig. 3 Optimized geometry and Mulliken charges for the N₄Me₅⁺ cation (B3LYP/6-31+G(d,p)).

References (Supporting Information)