Supporting Information

Gilles Argouarch, Romain Veillard, Thierry Roisnel, Anissa Amar, Abdou Boucekkine, Anu Singh, Isabelle Ledoux* and Frédéric Paul*

Donor-substituted Triaryl-1,3,5-Triazinanes-2,4,6-Triones: Octupolar NLO-phores with a Remarkable Transparency–Nonlinearity Trade-off

Including:

1. NLO Measurements p. S2
2. Crystal data and structure refinement for 4 p. S3
1. NLO Measurements

The first hyperpolarizabilities were determined by performing hyper-Raleigh scattering (HRS) experiments in CH₂Cl₂ solutions. This technique is based on the analysis of the incoherent light scattered second-harmonic signal from an isotropic medium. The scattered nonlinear intensity $I^{2\omega}$ can be expressed as $I^{2\omega} = C(N_S\langle\beta_S^2\rangle + N\langle\beta^2\rangle)(I^{\omega})^2$ for a solution containing N chromophores dissolved in N_S solvent molecules (concentrations expressed per milliliter of solution), where the C coefficient represents geometrical factors and experimental terms. The brackets refer to orientationally averaged β values. The C scaling factor is empirically deduced by a calibration experiment using a reference.

HRS measurements were conducted with a single-mode Nd:YAG laser emitting pulses of 10-MW peak power and 10-ns duration at 10-Hz repetition rate. The incident intensity I^{ω} is monitored by a half-wave plate and a Glan polarizer. A fraction of the incident beam is extracted from the main beam by a glass plate and sent onto a reference NPP frequency doubling calibrated powder. The fundamental beam is focused in a cell which contains the solution. The scattered harmonic signal is then collected at a right angle on a second photomultiplier after spectral selection through an interferential filter with 3-nm spectral resolution. For measurements performed in chloroform, the solvent was taken as reference, with a $\langle\beta_S^2\rangle^{1/2}$ value of 0.19 10^{-30} esu at 1.064 µm. For measurements effected in dichloromethane, ethyl violet was taken as an external reference standard with a $\langle\beta^2\rangle^{1/2}$ value of 170 10^{-30} esu at 1.907 µm. In both cases, ca. 10^{-3} M solutions were used. Note that the excitation wavelength was chosen so as not to allow two-photon excitation of any of the chromophores examined, i.e. at a much longer wavelength than twice the their absorption wavelength. The experimental accuracy is estimated to be ± 15%.
2. Crystal data and structure refinement for 4

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C<sub>27</sub>H<sub>15</sub>N<sub>3</sub>O<sub>3</sub></td>
</tr>
<tr>
<td>Formula weight</td>
<td>429.42</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Trigonal, R 3 c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 13.5264(13) Å, alpha = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>b = 13.526 Å, beta = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>c = 24.608(2) Å, gamma = 120 deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>3899.2(5) Å<sup>3</sup></td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>6, 1.097 Mg/m<sup>3</sup></td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.073 mm<sup>-1</sup></td>
</tr>
<tr>
<td>F(000)</td>
<td>1332</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.25 × 0.23 × 0.15 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.01 to 27.48 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-16<=h<=17, -17<=k<=16, -25<=l<=31</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>7587 / 1002 [R(int) = 0.0576]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.989 and 0.975</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F<sup>2</sup></td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1002 / 1 / 100</td>
</tr>
<tr>
<td>Goodness-of-fit on F<sup>2</sup></td>
<td>1.162</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0693, wR2 = 0.1716</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0720, wR2 = 0.1732</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-10(10)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.326 and -0.320 e.Å<sup>-3</sup></td>
</tr>
</tbody>
</table>
Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for 4. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$U(\text{eq})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>6523(4)</td>
<td>1102(5)</td>
<td>5364(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5566(4)</td>
<td>931(4)</td>
<td>5309(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>4414(3)</td>
<td>716(3)</td>
<td>5224(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>4067(4)</td>
<td>852(4)</td>
<td>4725(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2953(3)</td>
<td>654(3)</td>
<td>4622(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>3648(3)</td>
<td>358(4)</td>
<td>5659(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2538(4)</td>
<td>158(3)</td>
<td>5587(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2223(3)</td>
<td>322(3)</td>
<td>5072(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>1079(3)</td>
<td>149(3)</td>
<td>4991(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>966(3)</td>
<td>1123(3)</td>
<td>5012(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>1777(2)</td>
<td>2072(2)</td>
<td>5053(1)</td>
<td>22(1)</td>
</tr>
</tbody>
</table>

Bond lengths [Å] and angles [deg] for 4.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-C(2)</td>
<td>1.203(6)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.450(6)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.359(7)</td>
</tr>
<tr>
<td>C(3)-C(6)</td>
<td>1.398(6)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.415(6)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(5)-C(8)</td>
<td>1.401(6)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.398(6)</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.388(6)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(8)-N(9)</td>
<td>1.460(5)</td>
</tr>
<tr>
<td>N(9)-C(10)#1</td>
<td>1.396(5)</td>
</tr>
<tr>
<td>N(9)-C(10)</td>
<td>1.401(5)</td>
</tr>
<tr>
<td>C(10)-O(10)</td>
<td>1.206(5)</td>
</tr>
<tr>
<td>C(10)-N(9)#2</td>
<td>1.396(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)-C(1)-H(1)</td>
<td>180.0</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>178.2(6)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(6)</td>
<td>119.5(4)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>120.8(4)</td>
</tr>
<tr>
<td>C(6)-C(3)-C(2)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>123.0(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-H(4)</td>
<td>118.5</td>
</tr>
<tr>
<td>C(5)-C(4)-H(4)</td>
<td>118.5</td>
</tr>
<tr>
<td>C(8)-C(5)-C(4)</td>
<td>115.5(4)</td>
</tr>
<tr>
<td>C(8)-C(5)-H(5)</td>
<td>122.2</td>
</tr>
<tr>
<td>C(4)-C(5)-H(5)</td>
<td>122.2</td>
</tr>
</tbody>
</table>
C(7)-C(6)-C(3) 120.5(4)
C(7)-C(6)-H(6) 119.8
C(3)-C(6)-H(6) 119.8
C(8)-C(7)-C(6) 118.1(4)
C(8)-C(7)-H(7) 120.9
C(6)-C(7)-H(7) 120.9
C(7)-C(8)-C(5) 123.3(4)
C(7)-C(8)-N(9) 119.0(4)
C(5)-C(8)-N(9) 117.6(4)
C(10)#1-N(9)-C(10) 123.8(4)
C(10)#1-N(9)-C(8) 118.0(3)
C(10)-N(9)-C(8) 116.8(3)
O(10)-C(10)-N(9)#2 121.7(3)
O(10)-C(10)-N(9) 122.3(4)
N(9)#2-C(10)-N(9) 115.9(4)

Symmetry transformations used to generate equivalent atoms:
#1 -x+y,-x,z #2 -y,x-y,z
Anisotropic displacement parameters (Å² x 10³) for 4.
The anisotropic displacement factor exponent takes the form: -2π² [h² a*² U11 + ... + 2 h k a* b* U_{12}]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>17(2)</td>
<td>46(3)</td>
<td>48(3)</td>
<td>13(2)</td>
<td>2(2)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>18(2)</td>
<td>30(2)</td>
<td>28(2)</td>
<td>8(2)</td>
<td>4(2)</td>
<td>12(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>16(2)</td>
<td>17(2)</td>
<td>44(3)</td>
<td>3(2)</td>
<td>0(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>20(2)</td>
<td>23(2)</td>
<td>27(2)</td>
<td>1(2)</td>
<td>9(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>20(2)</td>
<td>16(2)</td>
<td>28(2)</td>
<td>3(2)</td>
<td>5(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>17(2)</td>
<td>25(2)</td>
<td>28(2)</td>
<td>6(2)</td>
<td>1(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>18(2)</td>
<td>20(2)</td>
<td>36(2)</td>
<td>2(2)</td>
<td>6(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>10(2)</td>
<td>8(2)</td>
<td>31(2)</td>
<td>-3(2)</td>
<td>-2(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>14(2)</td>
<td>18(2)</td>
<td>27(2)</td>
<td>4(1)</td>
<td>2(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>16(2)</td>
<td>12(2)</td>
<td>23(2)</td>
<td>-1(1)</td>
<td>-4(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>O(10)</td>
<td>17(1)</td>
<td>16(1)</td>
<td>31(2)</td>
<td>4(1)</td>
<td>3(1)</td>
<td>6(1)</td>
</tr>
</tbody>
</table>
Torsion angles [deg] for 4.

C(1)-C(2)-C(3)-C(4) -26(16)
C(1)-C(2)-C(3)-C(6) 153(16)
C(6)-C(3)-C(4)-C(5) 0.4(6)
C(2)-C(3)-C(4)-C(5) -180.0(4)
C(3)-C(4)-C(5)-C(8) 1.0(6)
C(4)-C(3)-C(6)-C(7) -1.0(6)
C(2)-C(3)-C(6)-C(7) 179.3(4)
C(3)-C(6)-C(7)-C(8) 0.2(6)
C(6)-C(7)-C(8)-C(5) 1.4(6)
C(6)-C(7)-C(8)-N(9) -178.3(4)
C(4)-C(5)-C(8)-C(7) -1.9(6)
C(4)-C(5)-C(8)-N(9) 177.7(3)
C(7)-C(8)-N(9)-C(10)#1 -70.8(5)
C(5)-C(8)-N(9)-C(10)#1 109.6(4)
C(7)-C(8)-N(9)-C(10) 96.3(4)
C(5)-C(8)-N(9)-C(10) -83.4(4)
C(10)#1-N(9)-C(10)-O(10) 171.7(3)
C(8)-N(9)-C(10)-O(10) 5.4(6)
C(10)#1-N(9)-C(10)-N(9)#2 -7.2(8)
C(8)-N(9)-C(10)-N(9)#2 -173.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+y,-x,z #2 -y,x-y,z