Supporting Information

Effect of Main Ligands on Organic Photovoltaic Performance of Ir(III) Complexes

Woochul Lee, a, † Tae-Hyuk Kwon, a, b, † Jongchul Kwon, a Jiyoung Kim, c Changhee Lee, c and Jong-In Hong a, *

aDepartment of Chemistry, College of Natural Sciences, Seoul National University
Seoul, 151-747, (Korea)

bSchool of Chemistry, Bio21 Institute, University of Melbourne,
Parkville, Victoria 3010, Australia;

cSchool of Electrical Engineering and Computer Science, Inter-university Semiconductor Research Center, Seoul National University
Seoul 151-742, (Korea)

List of Contents

Fig. S1 PL Spectra

Fig. S2 CV data

Fig. S3 Electron Only Device Data

Fig. S4 EL spectra
Fig. S1. PL spectra of Ir complexes neat film and a blending film of Ir complexes:PCBM = 1:1
Fig. S2. Cyclic voltammograms of 1, 2 and 3 (each 1.00 mM in dichloromethane).
Fig. S3. Performance of electron-only OLED device of 1, 2 and 3; (a) luminance (cd m\(^{-2}\)) vs. current density \(J\) (mA cm\(^{-2}\)), (b) current efficiency (cd A\(^{-1}\)) vs. current density \(J\) (mA cm\(^{-2}\)), (c) luminance (cd m\(^{-2}\)) vs. voltage (V), (d) power efficiency (lm W\(^{-1}\)) vs. current density \(J\) (mA cm\(^{-2}\)).
Fig. S4. EL spectra of OLED devices of 1, 2 and 3.