Supporting Information for

Facile synthesis and optoelectronic properties of N,N-Difluorenevinylaniline-based Molecules

Zhao-Min Lin¹, Chao Zheng¹, Jian-Jian Xiao, Run-Feng Chen¹*, Juan Song¹, Ping Zhao², Zhong-Fu An¹, He Tian² and Wei Huang¹*

1. Key Laboratory for Organic Electronics & Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210046, China

2. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, China

*Corresponding author. Tel: +86 25 8586 6008; Fax: +86 25 8586 6999

E-mail: wei-huang@njupt.edu.cn or iamrfchen@njupt.edu.cn.

Table of Contents

1. Computational details 01
2. Nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HRMS) spectra 03
3. Fluorescence decay profile 16
4. Cyclic Voltammograms 17
5. Current density-voltage-brightness plots 18

Computational Details

Computations were done with Gaussian 03 program package with different parameters for structure optimization and vibrational analysis. The ground-state geometries were fully optimized by the Becke’s three-parameter exchange functional along with the Lee-Yang-Parr correlation functional with the restricted (RB3LYP) at the standard split valence plus polarization function 6-31G(d) basis set. These fully optimized stationary points were further characterized by harmonic vibrational frequency analysis to ensure that real local minima had been found without imaginary vibrational frequency. The C₄H₉ groups in FXs were downsized to CH₃ groups in the model compounds as shown in Table S1 in order to reduce...
the computational burden, since the length of alkyl has little influence on the optoelectronic properties of a single molecule. The various property parameters of FXs such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energies, and energy gap (E_g) were derived from the computed results according to literature publications.

Table S1. The calculated model molecules (in black) of N,N-difluorene-aniline-based D-π-X-π-D molecules (FXs).

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Model structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td></td>
</tr>
<tr>
<td>DFPh</td>
<td></td>
</tr>
<tr>
<td>DFTh</td>
<td></td>
</tr>
<tr>
<td>DFTb</td>
<td></td>
</tr>
</tbody>
</table>
Scheme S1. Electroluminescence diagram of dumbbell-shaped FXs.

(For DFPh, a new emission at 484 nm emerged besides the emission at 513 nm in comparison with the PL spectrum in film. We tried to figure out the origin of this phenomenon by DFT calculations (see Figure 6). For dumbbell-shaped molecule DFTb, almost electrons were injected into the LUMO level through LUMO+1 and radiate to HOMO level. For DFPh, another available way exists for photoluminescence. Comparing with LUMO+1 of DFTb which is dominated by the π^* orbital contribution of the core, the LUMO+1 of DFPh is mainly dominated by the π^* orbital contribution of the periphery due to the week electron receptivity of core. When electrons were injected into periphery, parts of them immediately radiate to the HOMO-1 level which also concentrate on the periphery.)

Nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HRMS) spectra

(1) 1-Nitro-4-vinylbenzene
Figure S2. 13C NMR of 1-nitro-4-vinylbenzene in CDCl$_3$.

(2) 4-vinylaniline

Figure S3. 1H NMR of 4-vinylaniline in CDCl$_3$.
Figure S4. 13C NMR of 4-vinylaniline in CDCl$_3$.

(3) 2-bromo-9,9-dibutylfluorene

Figure S5. 1H NMR of 2-bromo-9,9-dibutylfluorene in CDCl$_3$.
Figure S6. 13C NMR of 2-bromo-9,9-dibutylfluorene in CDCl$_3$.

(4) N,N'-Bis(9,9-dibutyl-fluoren-2-yl)-4-vinylanline (F)

Figure S7. 1H NMR of F in CDCl$_3$.
Figure S8. 13C NMR of F in CDCl$_3$.

Figure S9. The HRMS spectrum of F.

Single Mass Analysis

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>3.0 mDa</th>
<th>DBE: min = -1.5, max = 50.0</th>
<th>Element prediction: OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isotope peaks used for I-FIT</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monoisotopic Mass, Even Electron ions

53 formula(s) evaluated with 1 results within limits (up to 1 best isotopic matches for each mass)

Elements Used:
C: 0.70 H: 0.150 N: 0.5

TAN-1HE

HNZP-L2L-M467.21 (0.918) Cm (14.24)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>I-FIT</th>
<th>I-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>672.4575</td>
<td>672.4569</td>
<td>0.6</td>
<td>0.9</td>
<td>22.5</td>
<td>20.3</td>
<td>0.0</td>
<td>C50 H58 N</td>
</tr>
</tbody>
</table>

1: TOF MS, EB= 4.4e+003
(5) 1-[N,N-bis (9,9-dibutyl-fluoren-2-yl)]-2-(9,9-dibutyl-fluoren-2-yl)ethene (FF)

Figure S10. 1H NMR of FF in CDCl$_3$.

Figure S11. 13C NMR of FF in CDCl$_3$.
Figure S12. The HRMS spectrum of FF.
(6) 1,4-Bis(4-[N,N-bis(9,9-dibutyl-fluoren-2-yl)aniline]vinyl)benzene (DFPh)

Figure S13. 1H NMR of DFPh in CDCl$_3$.

Figure S14. 13C NMR of DFPh in CDCl$_3$.
Figure S15. The HRMS spectrum of DFPh.
Figure S16. 1H NMR of DFTh in CDCl$_3$.

Figure S17. 13C NMR of DFTh in CDCl$_3$.

(7) 2,5-Bis(4-[N,N-bis (9,9-dibutyl-fluoren-2-yl)aniline]vinyl)thiophene (DFTh)
Figure S18. The HRMS spectrum of DFTh.
(8) 4,7-Bis(4-[N,N-bis(9,9-dibutyl-fluoren-2-yl)aniline]vinyl)benzothiadiazole (DFTb)

Figure S19. 1H NMR of DFTb in CDCl$_3$.

Figure S20. 13C NMR of DFTb in CDCl$_3$.
Figure S21. The HRMS spectrum of DFTb.
Fluorescence Decay Profiles

Figure S22. Fluorescence decay profiles of FXs in film excited at 370 nm.
Cyclic Voltammograms of FXs

Figure S23. Cyclic Voltammograms of FXs in thin solid films.
Current density-voltage-brightness plots of FXs

Figure S24. Current density-voltage-brightness plots of FXs.