Supporting Information

New Facile Synthesis of TiO₂ Hollow Sphere with an Opening Hole and Its Enhanced Rate Performance in Lithium-ion Battery

Shangjun Ding, Tianquan Lin, Yaoming Wang, Xujie Lü, Fuqiang Huang

a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
b Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Figure S1 SEM images of TiO₂ spheres prepared at different BA/TNB mole ratio (R value): (a) R=1.2, (b) R=2.4, (c) R=3.8, (d) R=4.8, (e) R=12.0, (f) R=26.0.

Scale bar: 5 μm.
Figure S2 SEM images of TiO$_2$ spheres prepared at different OA/TNB mole ratio (R value): (a) $R=1.0$, (b) $R=2.0$, (c) $R=2.8$, (d) $R=4.3$, (e) $R=11.0$, (f) $R=22.0$.

Scale bar: 10 μm.
Figure S3 SEM images of TiO$_2$ spheres prepared at different AA/TNB mole ratio (R value): (a) R=1.5, (b) R=3.0, (c) R=6.0, (d) R=9.0, (e) R=18.0, (f) R=36.0. Scale bar: 5 μm.
Figure S4 XRD patterns of the TiO$_2$ spheres prepared at different HA/TNB mole ratio (R value)

Figure S5 SEM images of the TiO$_2$ spheres prepared at different HA/TNB mole ratio (R value): (a) $R=3$; (b) $R=25$.
Figure S6 The nitrogen adsorption-desorption isotherms (a) and the corresponding pore size distribution (b) calculated from the desorption branches by BJH method.
Figure S7 Cyclic voltammograms of different TiO$_2$ spheres prepared at two HA/TNB mole ratio (R value), scanning rate: 0.1 mV/s.

Figure S8 The electrochemical impedance spectroscopy (EIS) of different TiO$_2$ spheres prepared at two HA/TNB mole ratio (R value)