Supporting Information

Facile and controllable fabrication of three-dimensionally quasi-order macroporous TiO₂ for high performance lithium-ion batteries applications

Hongliang Jiang,^a Xiaoling Yang,^{*a} Cheng Chen,^b Yihua Zhu,^{*a} Chunzhong Li^a

^a. Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials

Science and Engineering, East China University of Science and Technology, Shanghai

200237, China.

^b. School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China.

*Corresponding author: Fax: +86-21-64250624; E-mail: xlyang@ecust.edu.cn (X. Yang);

yhzhu@ecust.edu.cn (Y. Zhu)

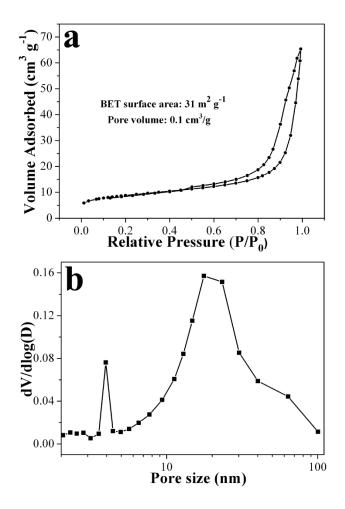


Figure S1. N_2 adsorption–desorption isotherms (a) and the corresponding pore size distribution (b) of TiO₂ quasi-inverse opal with dense wall.

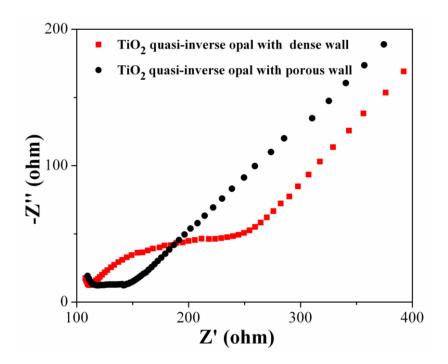


Figure S2. Impedance measurement of coin cells using the electrode materials of TiO_2 quasi-inverse opals.