Direct Synthesis of Pyrroles via 1,3-Dipolar Cycloaddition of Azomethine Ylides with Ynones

Zheng Wanga, Ying Shia, Xiaoyan Luoa, De-Man Hanb and Wei-Ping Denga,c,*

a School of Pharmacy and Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. E-mail: weiping_deng@ecust.edu.cn

b Department of Chemistry, Taizhou University, 605 Dongfang Road, Linhai 317000, China.

c Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute Organic Chemistry, Chinese Academy of Science, 345 LingLing Road, Shanghai, 200032, China.

Contents

1. Experimental Section
2. X-ray crystal structure of 3aa
3. 1H NMR and 13C NMR spectra
General Information

All Chemicals were purchased from commercial sources and they were used without further purification unless otherwise specified. Melting points were obtained on a micro melting apparatus SGW X-4 and uncorrected. HRMS (ESI) spectra were measured on a Waters LCT Premier XE spectrometer. 1H NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer in chloroform-d_3 or DMSO-d_6. 13C NMR spectra were recorded on a Bruker DPX 100 MHz spectrometer in chloroform-d_3 or DMSO-d_6. Chemical shift values are reported in parts per million on the scale ($\delta_{TMS} = 0$). Infrared spectra were recorded on NICOLET 5SSXC instrument as thin film; frequencies are given as wavenumbers (cm$^{-1}$).

General Procedure for the Preparation of Ynones 1.1,2

A solution of the aldehyde (10.0 mmol) in dry THF (20 mL) was added to a stirred solution of ethynylmagnesium bromide in THF (0.5 M; 30 mL, 15.0 mmol) at 0 ºC. The mixture was stirred at 0 ºC for 2h, warmed to room temperature and was quenched with aq. sat. NH$_4$Cl sol (10 mL). The organic layer was separated and the aqueous phase was extracted with EtOAc (2x10 mL). The combined extracts were evaporated to give the propargyl alcohol as yellowish oil. Without purification, this material was added to a solution of IBX (5.6 g, 20.0 mmol) in DMSO and the solution was heated to 35 ºC for 6 h. The cooled reaction mixture was diluted with EtOAc (20 mL) and water (30 mL) and stirred vigorously for 10 min. Then it was filtered over celite. The organic layer was separated and the aqueous phase was extracted with ether (3x20 mL). The combined extracts were sequentially washed with aq. sat. NaHCO$_3$ (20 mL) and NaCl (20 mL) solutions, dried (Na$_2$SO$_4$) and evaporated in vacuo. The residue was subject to flash chromatography on silica gel (petroleum ether/ethyl acetate, 10:1) to afford pure ynone 1. Spectral data of the products were consistent with the previous report.2

General Procedure for AgOAc Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with Ynones

Under N$_2$ atmosphere, AgOAc (10 mg, 0.06 mmol), PPh$_3$ (31.5 mg, 0.12 mmol) and activated 4Å MS were dissolved in 2 mL anhydrous THF and stirred at room temperature for about 1 h. Iminooesters 2 (0.6 mmol) were added and after the reaction mixture was reduced to -40 ºC, ynones 1 (0.3 mmol) were added. Once starting material was consumed (monitored by TLC), the mixture...
was concentrated to dryness and then the residue was purified by column chromatography to give the corresponding products 3.

methyl 4-benzoyl-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3aa)

white solid, 69% yield. mp: 200-202 °C; 1H NMR (400 MHz, CDCl$_3$) δ 10.20 (brs, 1H), 7.80 (d, J = 7.2 Hz, 2H), 7.55-7.46 (m, 3H), 7.41 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 2.4 Hz, 1H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.6, 161.7, 139.7, 138.8, 135.2, 132.5, 130.2, 129.7, 129.2, 128.7, 128.4, 122.1, 119.8, 52.1; IR (KBr) v 3449, 3307, 2922, 1702, 1642, 1598, 1460, 1280, 1200, 1086, 1007, 892, 853, 746, 598, 509 cm$^{-1}$; HRMS(ESI): calcd for C$_{19}$H$_{13}$NO$_3$Cl (M+H$^+$) 338.0584, found 338.0581.

methyl 4-(4-chlorobenzoyl)-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3ba)

white solid, 63% yield. mp: 197-200 °C; 1H NMR (400 MHz, DMSO-d_6) δ 12.94 (s, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.51 (dd, J = 8.4, 1.9 Hz, 4H), 7.40 (d, J = 8.4 Hz, 2H), 7.03 (s, 1H), 3.81 (s, 3H); 13C NMR (100 MHz, DMSO-d_6) δ 189.5, 160.4, 139.6, 137.3, 137.1, 133.3, 131.2, 131.0, 129.2, 128.4, 127.9, 122.4, 121.0, 118.8, 51.6; IR (KBr) v 3450, 3298, 2922, 2852, 1694, 1653, 1583, 1557, 1439, 1331, 1280, 1244, 1208, 1156, 1086, 1014, 891, 828, 762, 726, 671, 536 cm$^{-1}$; HRMS(ESI): calcd for C$_{19}$H$_{14}$NO$_3$Cl$_2$ (M+H$^+$) 374.0351, found 374.0348.
Electronic Supplementary Material

methyl 5-(4-chlorophenyl)-4-(4-nitrobenzoyl)-1H-pyrrole-2-carboxylate (3ca)

yellow solid, 71% yield. mp: 239-241 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 13.04 (s, 1H), 8.25 (d, \(J = 8.8\) Hz, 2H), 7.86 (d, \(J = 8.8\) Hz, 2H), 7.53 (d, \(J = 8.4\) Hz, 2H), 7.40 (d, \(J = 8.4\) Hz, 2H), 7.02 (d, \(J = 2.4\) Hz, 1H), 3.80 (s, 3H); \(^1^3\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 189.1, 160.3, 149.0, 144.2, 140.3, 133.6, 131.5, 130.1, 129.1, 127.9, 123.5, 122.7, 120.6, 119.0, 51.7; IR (KBr) \(\nu\) 3283, 3104, 2960, 2853, 1705, 1654, 1562, 1558, 1442, 1412, 1353, 1281, 1251, 1213, 1092, 1005, 902, 848, 764, 745, 713, 510, 484 cm\(^{-1}\); HRMS(ESI): calcd for C\(_{10}\)H\(_8\)N\(_2\)O\(_3\)Cl (M+H\(^+\)) 385.0591, found 385.0586.

methyl 4-(3-bromobenzoyl)-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3da)

white solid, 69% yield. mp: 234-235 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 12.96 (s, 1H), 7.79-7.71 (m, 2H), 7.65 (d, \(J = 7.8\) Hz, 1H), 7.49 (d, \(J = 8.4\) Hz, 2H), 7.44-7.36 (m, 3H), 7.04 (s, 1H), 3.81 (s, 3H); \(^1^3\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 189.1, 160.4, 140.7, 139.9, 134.7, 133.4, 131.5, 131.3, 130.5, 129.2, 128.1, 127.9, 122.5, 121.6, 120.9, 118.7, 51.6; IR (KBr) \(\nu\) 3318, 3059, 2950, 1917, 1700, 1643, 1560, 1455, 1414, 1343, 1282, 1244, 1199, 1162, 1087, 1006, 899, 836, 763, 732, 681, 600, 511 cm\(^{-1}\); HRMS(ESI): calcd for C\(_{10}\)H\(_8\)NO\(_3\)ClBr (M+H\(^+\)) 417.9846, found 417.9850.

methyl 5-(4-chlorophenyl)-4-(2-fluorobenzoyl)-1H-pyrrole-2-carboxylate (3ea)

white solid, 67% yield. mp: 217-218 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 12.98 (s, 1H), 7.56-7.45 (m, 4H), 7.40 (d, \(J = 8.4\) Hz, 2H), 7.24 (t, \(J = 7.3\) Hz, 1H), 7.21-7.15 (m, 1H), 6.95 (s, 1H), 3.80 (s, 3H); \(^1^3\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 187.0, 160.3, 158.9 (d, \(J = 247.4\) Hz), 140.1, 133.6, 132.8 (d, \(J = 8.3\) Hz), 131.5, 130.0 (d, \(J = 2.7\) Hz), 128.9, 128.4 (d, \(J = 14.8\) Hz), 127.7, 124.4 (d, \(J = 3.1\) Hz), 122.7, 122.1, 118.7, 115.9 (d, \(J = 21.5\) Hz), 51.6; IR (KBr) \(\nu\) 3447, 3164, 3110, 2946, 1727, 1629, 1611, 1575, 1463, 1337, 1288, 1204, 1169, 1087, 1026, 897, 841, 760, 656, 510 cm\(^{-1}\); HRMS(ESI): calcd for C\(_{10}\)H\(_8\)NO\(_3\)ClF (M+H\(^+\)) 358.0646, found 358.0652.

S4
methyl 5-(4-chlorophenyl)-4-(2-methylbenzoyl)-1H-pyrrole-2-carboxylate (3fa)

white solid, 62% yield. mp: 140-141 °C. 1H NMR (400 MHz, DMSO-d_6) δ 12.92 (s, 1H), 7.54 (d, $J = 8.5$ Hz, 2H), 7.40 (d, $J = 8.5$ Hz, 2H), 7.33 (td, $J = 7.4$, 1.2 Hz, 1H), 7.28 (d, $J = 7.4$ Hz, 1H), 7.23 (d, $J = 7.4$ Hz, 1H), 7.17 (t, $J = 7.2$ Hz, 1H), 6.78 (s, 1H), 3.77 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz, DMSO-d_6) δ 192.5, 160.3, 140.0, 139.8, 135.3, 133.4, 131.4, 130.6, 129.8, 129.2, 127.9, 127.7, 125.2, 122.4, 122.3, 119.2, 51.6, 19.4; IR (KBr) ν 3565, 3472, 3304, 3071, 2956, 2852, 1701, 1638, 1558, 1471, 1443, 1340, 1278, 1254, 1205, 1168, 1092, 1006, 894, 829, 747, 667, 506 cm$^{-1}$; HRMS(ESI): calcd for C$_{20}$H$_{17}$NO$_3$Cl (M+H$^+$) 354.0897, found 354.0895.

methyl 5-(4-chlorophenyl)-4-(2,4-dimethylbenzoyl)-1H-pyrrole-2-carboxylate (3ga)

white solid, 53 % yield. mp: 195-197 °C. 1H NMR (400 MHz, DMSO-d_6) δ 12.88 (s, 1H), 7.53 (d, $J = 8.6$ Hz, 2H), 7.40 (d, $J = 8.5$ Hz, 2H), 7.19 (d, $J = 7.7$ Hz, 1H), 7.05 (s, 1H), 6.98 (d, $J = 7.5$ Hz, 1H), 6.79 (s, 1H), 3.77 (s, 3H), 2.28 (s, 3H), 2.23 (s, 3H); 13C NMR (100 MHz, DMSO-d_6) δ 192.4, 160.4, 139.7, 139.6, 137.1, 135.7, 133.3, 131.3, 129.3, 128.5, 127.7, 125.7, 122.6, 122.2, 119.2, 51.6, 20.8, 19.5; IR (KBr) ν 3447, 3296, 2922, 2853, 1701, 1573, 1469, 1380, 1278, 1133, 1007, 871, 831, 720, 506 cm$^{-1}$; HRMS(ESI): calcd for C$_{20}$H$_{17}$NO$_3$Cl (M+H$^+$) 370.0846, found 370.0849.
Electronic Supplementary Material

methyl 5-(4-chlorophenyl)-4-(4-methoxybenzoyl)-1H-pyrrole-2-carboxylate (3ha)

white solid, 80 % yield. mp: 189-190 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.94 (s, 1H), 7.82 (d, $J = 8.8$ Hz, 2H), 7.47 (d, $J = 8.6$ Hz, 2H), 7.33 (d, $J = 8.6$ Hz, 2H), 7.17 (d, $J = 2.5$ Hz, 1H), 6.89 (d, $J = 8.8$ Hz, 2H), 3.86 (s, 3H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 190.4, 163.3, 161.6, 138.9, 135.0, 132.2, 131.4, 130.0, 129.4, 128.8, 122.6, 122.1, 119.4, 113.6, 55.6, 52.0; IR (KBr) v 2350, 2329, 1780, 1708, 1665, 1644, 1611, 1542, 1498, 1475, 1450, 1409, 1262, 1211, 1164, 1116, 1037, 1013, 891, 839, 750, 725, 646, 610, 543 cm$^{-1}$; HRMS(ESI): calcd for C$_{20}$H$_{17}$NO$_4$Cl (M+H$^+$) 370.0846, found 370.0849.

![Diagram](image1.png)

methyl 5-(4-chlorophenyl)-4-(4-methylbenzoyl)-1H-pyrrole-2-carboxylate (3ia)

white solid, 65 % yield. mp: 162-164 °C. 1H NMR (400 MHz, DMSO-d$_6$) δ 12.87 (s, 1H), 7.62 (d, $J = 8.0$ Hz, 2H), 7.52 (d, $J = 8.6$ Hz, 2H), 7.41 (d, $J = 8.6$ Hz, 2H), 7.27 (d, $J = 7.9$ Hz, 2H), 7.00 (d, $J = 1.6$ Hz, 1H), 3.81 (s, 3H), 2.36 (s, 3H); 13C NMR (100 MHz, DMSO-d$_6$) δ 190.4, 160.5, 142.6, 139.1, 135.9, 133.2, 131.1, 129.4, 129.3, 128.9, 127.9, 122.2, 121.5, 118.8, 51.6, 21.1; IR (KBr) v 3450, 3288, 3269, 3295, 2920, 1692, 1635, 1603, 1455, 1412, 1339, 1280, 1254, 1204, 1160, 1087, 1002, 896, 836, 762, 673, 552, 511, 465 cm$^{-1}$; HRMS(ESI): calcd for C$_{20}$H$_{17}$NO$_3$Cl (M+H$^+$) 354.0897, found 354.0893.

![Diagram](image2.png)

methyl 5-(4-chlorophenyl)-4-(furan-2-carbonyl)-1H-pyrrole-2-carboxylate (3ja)

pale yellow solid, 68% yield. mp: 192-194 °C. 1H NMR (400 MHz, CDCl$_3$) δ 10.03 (s, 1H), 7.62-7.60 (m, 1H), 7.56-7.52 (m, 3H), 7.35 (d, $J = 8.5$ Hz, 2H), 7.21 (d, $J = 3.1$ Hz, 1H), 6.54 (dd, $J = 3.5$, 1.6 Hz, 1H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 177.4, 161.6, 153.4, 146.5, 139.9, 135.2, 130.3, 129.4, 128.7, 122.4, 121.0, 119.2, 118.9, 112.3, 52.1; IR (KBr) v 3451, 3269, 3126, 2950, 1696, 1624, 1560, 1470, 1436, 1335, 1284, 1259, 1211, 1089, 1018, 938, 845, 759, 598, 560, 513 cm$^{-1}$; HRMS(ESI): calcd for C$_{17}$H$_{13}$NO$_4$Cl (M+H$^+$) 330.0533, found 330.0530.
EPC 7

ethyl 4-benzyol-5-(4-chlorophenyl)-1H-pyrole-2-carboxylate (3ab)
white solid, 69% yield. mp: 165-167 °C. 1H NMR (400 MHz, CDCl3) δ 10.30 (s, 1H), 7.80 (d, J = 7.1 Hz, 2H), 7.55-7.46 (m, 3H), 7.41 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 2.5 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 191.7, 161.4, 139.7, 138.9, 135.1, 132.4, 130.3, 129.7, 129.4, 128.6, 128.3, 122.5, 122.1, 119.6, 61.2, 14.4; IR (KBr) ν 3449, 3280, 2922, 2852, 1683, 1653, 1600, 1455, 1421, 1334, 1280, 1251, 1204, 1164, 1091, 1022, 896, 832, 777, 739, 700, 512 cm⁻¹; HRMS(ESI): calcd for C20H17NO3Cl (M+H)+ 354.0897, found 354.0894.

tert-butyl 4-benzyol-5-(4-chlorophenyl)-1H-pyrole-2-carboxylate (3ac)
white solid, 69%. mp: 220-221 °C. 1H NMR (400 MHz, CDCl3) δ 9.77 (brs, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 2.5 Hz, 1H), 1.50 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 191.8, 160.5, 138.9, 138.9, 135.0, 132.4, 130.1, 129.7, 129.5, 128.8, 128.3, 124.0, 122.0, 118.9, 82.1, 28.3; IR (KBr) ν 3447, 3179, 2924, 2853, 1893, 1707, 1630, 1574, 1456, 1367, 1292, 1152, 1091, 1018, 981, 891, 824, 696, 541, 513 cm⁻¹; HRMS(ESI): calcd for C22H21NO3Cl (M+H)+ 382.1210, found 382.1212.

methyl 4-benzyol-5-phenyl-1H-pyrole-2-carboxylate (3ad)
white solid, 82% yield. mp: 157-158 °C. 1H NMR (400 MHz, CDCl3) δ 9.99 (brs, 1H), 7.79 (d, J =
Electronic Supplementary Material

7.1 Hz, 2H), 7.54-7.51 (m, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.34-7.31 (m, 3H), 7.21 (d, J = 2.6 Hz, 1H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.8, 161.7, 140.9, 138.9, 132.3, 130.8, 129.7, 129.1, 128.9, 128.5, 128.2, 122.0, 119.7, 52.1; IR (KBr) ν 3269, 3057, 1692, 1651, 1562, 1460, 1426, 1260, 1210, 1003, 891, 775, 735, 697, 543 cm$^{-1}$; HRMS(ESI): calcld for C$_{19}$H$_{16}$NO$_3$ (M+H$^+$) 306.1130, found 306.1126.

methyl 4-benzyol-5-(4-bromophenyl)-1H-pyrrole-2-carboxylate (3ae)

white solid, 79% yield. mp: 200-202$^\circ$C. 1H NMR (400 MHz, CDCl$_3$) δ 10.15 (s, 1H), 7.80 (d, J = 7.1 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.48-7.38 (m, 6H), 7.19 (d, J = 2.5 Hz, 1H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.6, 161.7, 139.7, 138.8, 132.5, 131.7, 130.4, 129.7, 129.7, 128.4, 123.5, 122.2, 122.1, 119.8, 52.1; IR (KBr) ν 3303, 3060, 2950, 1701, 1643, 1464, 1414, 1279, 1250, 1200, 1162, 1069, 1003, 892, 832, 742, 695, 597, 548, 492 cm$^{-1}$; HRMS(ESI): calcld for C$_{19}$H$_{15}$NO$_3$Br (M+H$^+$) 384.0235, found 384.0235.

methyl 4-benzyol-5-(2-chlorophenyl)-1H-pyrrole-2-carboxylate (3af)

white solid, 89% yield. mp: 183-185$^\circ$C. 1H NMR (400 MHz, CDCl$_3$) δ 10.20 (brs, 1H), 7.76 (d, J = 7.1 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.39-7.32 (m, 4H), 7.30-7.17 (m, 3H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.3, 161.7, 138.7, 137.4, 133.5, 132.2, 132.1, 130.4, 130.3, 129.9, 129.5, 128.1, 126.7, 123.9, 122.3, 118.3, 52.0; IR (KBr) ν 3243, 3022, 2953, 1691, 1655, 1564, 1460, 1345, 1284, 1260, 1213, 1167, 1071, 1002, 894, 852, 768, 735, 699, 557 cm$^{-1}$; HRMS(ESI): calcld for C$_{19}$H$_{15}$NO$_3$Cl (M+H$^+$) 340.0740, found 340.0743.
Electronic Supplementary Material

methyl 4-benzoyl-5-(3-bromophenyl)-1H-pyrrole-2-carboxylate (3ag)

white solid, 72% yield. mp: 220-221 °C. 1H NMR (400 MHz, CDCl3) δ 10.30 (s, 1H), 7.79 (d, J = 7.1 Hz, 2H), 7.69-7.67 (m, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.49-7.43 (m, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.23-7.12 (m, 2H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 191.6, 161.7, 139.1, 138.8, 132.8, 132.4, 132.0, 131.6, 130.0, 129.7, 128.3, 127.8, 122.5, 119.7, 52.2; IR (KBr) ν 3445, 3097, 2945, 1726, 1628, 1596, 1573, 1462, 1435, 1335, 1291, 1270, 1162, 1015, 896, 793, 734, 680, 591, 449 cm⁻¹; HRMS(ESI): calcd for C19H15NO3Br (M+H⁺) 384.0235, found 384.0235.

methyl 4-benzoyl-5-(p-tolyl)-1H-pyrrole-2-carboxylate (3ah)

white solid, 76% yield. mp: 184-185 °C. 1H NMR (400 MHz, CDCl3) δ 9.84 (brs, 1H), 7.80 (d, J = 7.1 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.43 (d, J = 8.1 Hz), 7.38 (d, J = 7.6 Hz), 7.19 (d, J = 2.6 Hz, 1H), 7.14 (d, J = 7.8 Hz, 2H), 3.82 (s, 3H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 191.7, 161.7, 141.1, 139.2, 139.0, 132.2, 129.7, 129.3, 128.6, 128.2, 127.9, 121.7, 119.8, 52.0, 21.4; IR (KBr) ν 3407, 3169, 2948, 1715, 1628, 1561, 1478, 1454, 1287, 1204, 1166, 1115, 1012, 892, 739, 701, 608, 538 cm⁻¹; HRMS(ESI): calcd for C20H16NO3 (M+H⁺) 320.1287, found 320.1286.

methyl 4-benzoyl-5-(o-tolyl)-1H-pyrrole-2-carboxylate (3ai)

white solid, 82% yield. mp: 217 °C. 1H NMR (400 MHz, CDCl3) δ 10.04 (brs, 1H), 7.74 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.32-7.24 (m, 3H), 7.23-7.15 (m,
Electronic Supplementary Material

2H), 3.72 (d, J = 2.6 Hz, 3H), 2.20 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.2, 161.8, 140.9, 138.9, 137.3, 132.0, 131.2, 130.3, 130.2, 129.4, 129.2, 128.1, 125.7, 123.2, 121.7, 118.5, 52.0, 20.0; IR (KBr) ν 3451, 3249, 2952, 1692, 1651, 1563, 1472, 1430, 1343, 1288, 1264, 124, 893, 853, 738, 701, 451 cm$^{-1}$; HRMS(ESI): calcd for C$_{20}$H$_{18}$NO$_3$ (M+H$^+$) 320.1287, found 320.1284.

methyl 4-benzoyl-5-cyclohexyl-1H-pyrrole-2-carboxylate (3aj)

white solid, 31% yield. mp: 168-171 °C. 1H NMR (400 MHz, CDCl$_3$) δ 9.32 (brs, 1H), 7.79 (d, J = 7.0 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.06 (d, J = 2.4 Hz, 1H), 3.85 (s, 3H), 3.51 (tt, J = 11.6, 3.1 Hz, 1H), 2.07 (d, J = 11.0 Hz, 2H), 1.85 (d, J = 12.5 Hz, 2H), 1.78 (d, J = 13.3 Hz, 1H), 1.54-1.34 (m, 4H), 1.32-1.20 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 192.0, 161.5, 149.7, 140.1, 131.8, 129.2, 128.3, 120.3, 120.2, 119.3, 51.8, 36.3, 32.4, 26.5, 26.1; IR (KBr) ν 3331, 2921, 2851, 1691, 1639, 1560, 1495, 1456, 1377, 1265, 1203, 1101, 1014, 908, 801, 732, 698, 669, 630, 514 cm$^{-1}$; HRMS(ESI): calcd for C$_{19}$H$_{22}$NO$_3$ (M+H$^+$) 312.1600, found 312.1599.

References

Electronic Supplementary Material

X-ray crystal structure of 3aa

![Structure diagram](image)

Fig 1. X-ray crystal structure of 3aa (the ORTEP plot is shown at the 30 percent probability level)

Crystal data for 3aa:
(CCDC 918358 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{19}H_{14}ClNO_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>339.76</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2 (1) / c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 12.9597 (11) Å</td>
</tr>
<tr>
<td></td>
<td>b = 9.6741 (8) Å</td>
</tr>
<tr>
<td></td>
<td>c = 13.3527 (11) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>1644.4 (2) Å^3</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>4, 1.372 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.249 mm^-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>704</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.287 x 0.211 x 0.143 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.62 to 26.00 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-15<=h<=15, -6<=k<=11, -14<=l<=16</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>9581 / 3225 [R (int) = 0.0244]</td>
</tr>
<tr>
<td>Completeness to theta = 26.00</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.00000 and 0.72019</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3225 / 0 / 223</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.027</td>
</tr>
<tr>
<td>Final R indices [I>2 sigma(I)]</td>
<td>R1 = 0.0401, wR2 = 0.1026</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0495, wR2 = 0.1103</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.211 and -0.232 e.A^-3</td>
</tr>
</tbody>
</table>
Electronic Supplementary Material

1H NMR and 13C NMR spectra

methyl 4-benzoyl-5-(4-chlorophenyl)-1H-pyrrole-2-carboxy late (3aa)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-(4-chlorobenzoyl)-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3ba)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
methyl 5-(4-chlorophenyl)-4-(4-nitrobenzoyl)-1H-pyrrole-2-carboxylate (3ca)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)

Electronic Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013
methyl 4-(3-bromobenzoyl)-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3da)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
methyl 5-(4-chlorophenyl)-4-(2-fluorobenzoyl)-1H-pyrrole-2-carboxylate (3ea)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
methyl 5-(4-chlorophenyl)-4-(2-methylbenzoyl)-1H-pyrrole-2-carboxylate (3fa)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
methyl 5-(4-chlorophenyl)-4-(2,4-dimethylbenzoyl)-1H-pyrrole-2-carboxylate (3ga)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
methyl 5-(4-chlorophenyl)-4-(4-methoxybenzoyl)-1H-pyrrole-2-carboxylate (3ha)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 5-(4-chlorophenyl)-4-(4-methylbenzoyl)-1H-pyrrole-2-carboxylate (3ia)

1H NMR (400 MHz, DMSO-d_6)

13C NMR (100 MHz, DMSO-d_6)
methyl 5-(4-chlorophenyl)-4-(furan-2-carbonyl)-1H-pyrrole-2-carboxylate (3ja)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
ethyl 4-benzoyl-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3ab)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
Electronic Supplementary Material

tert-butyl 4-benzoyl-5-(4-chlorophenyl)-1H-pyrrole-2-carboxylate (3ac)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-benzoyl-5-phenyl-1H-pyrrole-2-carboxylate (3ad)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

S24
Electronic Supplementary Material

methyl 4-benzoyl-5-(4-bromophenyl)-1H-pyrrole-2-carboxylate (3ae)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-benzoyl-5-(2-chlorophenyl)-1H-pyrrole-2-carboxylate (3af)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-benzoyl-5-(3-bromophenyl)-1H-pyrrole-2-carboxylate (3ag)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-benzoyl-5-(p-tolyl)-1H-pyrrole-2-carboxylate (3ah)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-benzoyl-5-(o-tolyl)-1H-pyrrole-2-carboxylate (3ai)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
methyl 4-benzoyl-5-cyclohexyl-1H-pyrrole-2-carboxylate (3aj)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)