Supporting Information

Multifunctional manganese-doped core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells

Babao Lin,†a Xiuzhong Yao,†b Yihua Zhu,*,a Jianhua Shen,a Xiaoling Yang,a Hongliang Jiang,a and Xiaoqing Zhanga

a. Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

b. Department of Radiology, Zhongshan Hospital of Fudan University and Department of Medical Image, Shanghai Medical College of Fudan University, Shanghai Institute of Medical Imaging, 138 Fenglin Road, Shanghai 200032, China.

*Corresponding author: Fax: +86-21-64250624; Tel: +86 21 64252022; yhzhu@ecust.edu.cn (Y. Zhu)
Figure S1. Evolution of PL spectra of the resulting QDs during the growth of a ZnS shell.

Figure S2. EDX spectra of core QDs (A) and core/shell QDs (B).
Figure S3. XPS spectra of the core/shell QDs. (A) Mn2p, (B) Zn2p, (C) Cu2p and (D) In3d.
Figure S4. Multimodal core/shell quantum dots are detectable by MRI. (A) MR detection. Nanoparticles imaged by T_2-weighted MRI show increasing signal reduction as Mn$^{2+}$ concentration increases (from left to right, 0, 0.035, 0.068, 0.53, 1.81 mM). (B) T_2 relaxivity plot of aqueous suspension of CuInS$_2$/Zn$_{1-x}$Mn$_x$S.