Electronic Supplementary Information

Silicophosphates containing SiO₆ octahedra - anhydrous synthesis at ambient conditions

Sandra Jähnigen,a Erica Brendler,b Uwe Böhme,a Gerhard Heidec and Edwin Kroke*a

a TU Bergakademie Freiberg, Institut für Anorganische Chemie, Leipziger Straße 29, 09596 Freiberg, Germany. Fax: +49 (0)3731 394058; Tel: +49 (0)3731 393174; E-mail: Edwin.Kroke@chemie.tu-freiberg.de

b TU Bergakademie Freiberg, Institut für Analytische Chemie, Leipziger Straße 29, 09596 Freiberg, Germany

c TU Bergakademie Freiberg, Institut für Mineralogie, Brennhausgasse 14, 09596 Freiberg, Germany

Contents:

Figure S1 ²⁹Si CP/MAS NMR spectra of SiPO-3 with different contact times.
Figure S2 ²⁹Si SP/MAS NMR spectrum of SiPO-3.
Figure S3 Comparison of ³¹P CP/MAS and ³¹P MAS NMR spectra of compound SiPO-3.
Figure S4 ¹H NMR spectrum of SiPO-2.
Figure S5 ¹H→³¹P HETCOR NMR spectrum of SiPO-2.
Fig. S1 29Si CP/MAS NMR spectra of SiPO$_3$ [ppm] with contact time 350 μs, 1 ms and 5 ms. With increasing contact times signals at $\delta = -210$ ppm (SiO$_6$) were amplified compared to the SiO$_4$ signals.

Fig. S2 29Si SP/MAS NMR [ppm] spectrum from a different batch of SiPO 3.
Fig. S3 Comparison of 31P CP/MAS and 31P MAS NMR spectra [ppm] of compound SiPO-3.

Fig. S4 1H MAS NMR spectrum [ppm] of compound SiPO-2 at 14 kHz spinning speed. Signals at 10 ppm can be assigned to remaining OH groups of phosphoric acid, values at 1.3 ppm and around 3.9 ppm represent CH$_3$ and CH of i-propoxy groups and remaining solvent.
Fig. S5 1H\rightarrow31P HETCOR NMR spectrum of SiPO-2 at 14 kHz. At the 31P axes (horizontal) the 31P single pulse MAS spectrum is shown.