Supporting Information

The intriguing di-tripodal amine calix[4]arene possessing allosteric anion sensing properties using Cu(II) ions as effectors to induce Donnan exclusion failure in polymeric membrane ion-selective electrodes

Phetlada Kunthadee, Sarayut Watchasit, Arpadsara Kaowliew, Chomchai Suksai, Wanlapa Wongsan, Wittaya Ngeontae, Orawon Chailapakul, Wanlapa Aeungmaitrepirom and Thawatchai Tuntulani

Content

Figure S1. 1H-NMR spectrum of compound a in CDCl$_3$.
Figure S2. 13C-NMR spectrum of compound a in CDCl$_3$.
Figure S3. 1H-NMR spectrum of compound b in CDCl$_3$.
Figure S4. 13C-NMR spectrum of compound b in CDCl$_3$.
Figure S5. 1H-NMR spectrum of L1 in CDCl$_3$.
Figure S6. 13C-NMR spectrum of L1 in CDCl$_3$.
Figure S7. A comparison of selectivity coefficients ($\log \kappa_{i,j}^{pot}$) of the membranes containing L1 and 75 mol% KTpClPB preconditioned in 10^{-2} M of Cu(ClO$_4$)$_2$, Cu(NO$_3$)$_2$ and CuCl$_2$.

Electronic Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013
Figure S1. 1H-NMR spectrum of compound a in CDCl$_3$.
Figure S2. ^{13}C-NMR spectrum of compound a in CDCl$_3$.
Figure S3. 1H-NMR spectrum of compound b in CDCl$_3$.
Figure S4. 13C-NMR spectrum of compound b in CDCl$_3$.
Figure S5. 1H-NMR spectrum of L1 in CDCl$_3$.
Figure S6. 13C-NMR spectrum of L1 in CDCl$_3$.
Figure S7. A comparison of selectivity coefficients ($\log k_{i,j}^{\text{ pot}}$) of the membranes containing L1 and 75 mol% KTpClPB preconditioned in 10^{-2} M of Cu(ClO$_4$)$_2$ (a), Cu(NO$_3$)$_2$ (b), and CuCl$_2$ (c).