Supporting Information

Ternary ion-pair Complexation: A Protocol for Chiral Discrimination and the Assignment of Absolute Configuration of Hydroxy Acids

Sachin R. Chaudhari, N. Suryaprakash*

NMR Research Centre, Solid State and Structural Chemistry Unit,

Indian Institute of Science, Bangalore-560012

*Corresponding Author

e-mail: nsp@nrc.iisc.ernet.in

Tel: 0091 80 22933300, 919845124802

Fax: 0091 8023601550
Index

S1: Experimental

S2: Table 1: Chemical shift difference ($\Delta\delta_{R,S}$) (in Hz) of α-proton obtained for (R/S)-4-trifluoromethyl-mandelic acid in solvents of different polarities in the presence of one equivalents of DMAP and R-BINOL.

S3: Table 2 for measurement of ee.

S4: 1H-NMR spectrum of mandelic acid with excess of R enantiomer in the presence of 3 equivalent of R-BINOL and one equivalent of DABCO in the solvent CDCl$_3$ recorded at 298K. (The prepared scalemic ratios are 96 % R)

S5: 1H-NMR spectrum of mandelic acid with excess of R enantiomer in the presence of 3 equivalent of R-BINOL and one equivalent of DABCO in the solvent CDCl$_3$ recorded at 298K. (The prepared scalemic ratios are 98 % R)

S6: 1H-NMR spectrum of mandelic acid with excess of R enantiomer in the presence of 3 equivalent of R-BINOL and one equivalent of DABCO in the solvent CDCl$_3$ recorded at 298K. (The prepared scalemic ratios are 99 % R)

S7: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K

S8: 1H-NMR spectrum of racemic mixture of alpha-methoxyphenylacetic acid with one equivalent of R-BINOL and DMAP at 298 K

S9: 1H-NMR spectrum of racemic mixture of Ibuprofen with one equivalent of R-BINOL and DMAP at 240 K

S10: 1H-NMR spectrum of racemic mixture of 4-(trifluoromethyl) mandelic acid with one equivalent of R-BINOL and DMAP at 298 K.

S11: 1H-NMR spectrum of racemic mixture of tropic acid with one equivalent of R-BINOL and DMAP at 298 K.

S12: 1H-NMR spectrum of racemic mixture of 3-hydroxy butyric acid with one equivalent of R-BINOL and DMAP at 298 K.

S13: 1H-NMR spectrum of racemic mixture of 2-hydroxy-2-methylbutyric acid with one equivalent of R-BINOL and DMAP at 298 K.

S14: 1H-NMR spectrum of from racemic mixture of lactic acid with one equivalent of R-BINOL and DMAP at 298 K.

S15: 1H-NMR spectrum of from racemic mixture of 2,3-dibromopropanoic acid with one equivalent of R-BINOL and DMAP at 298 K.

S16: 1H-NMR spectrum of from racemic mixture of 2-chloropropanoic acid with one equivalent of R-BINOL and DMAP at 298 K.
S17: 1H-NMR spectra of R-mandelic acid at 298 K in a) R-BINOL and b) S-BINOL
S18: 1H-NMR spectra of R-mandelic acid at 240 K in a) R-BINOL and b) S-BINOL
S19: 1H-NMR spectra of R-4-chloro-mandelic acid at 298 K in a) R-BINOL and b) S-BINOL
S20: 1H-NMR spectra of R-4-chloro-mandelic acid at 240 K in a) R-BINOL and b) S-BINOL
S21: 1H-NMR spectra of S-mandelic acid at 298 K in a) R-BINOL and b) S-BINOL
S22: 1H-NMR spectra of S-mandelic acid at 240 K in a) R-BINOL and b) S-BINOL
S23: 1H-NMR spectra of S-2-chloromandelic acid at 298 K in a) R-BINOL and b) S-BINOL
S24: 1H-NMR spectra of S-2-chloromandelic acid at 240 K in a) R-BINOL and b) S-BINOL
S25: 1H-NMR spectra of S-alpha-hydroxy-1,3-dioxo-2-isoindolinebutyric acid at 298 K in a) R-BINOL and b) S-BINOL
S26: 1H-NMR spectra of S-alpha-hydroxy-1,3-dioxo-2-isoindolinebutyric acid at 240 K in a) R-BINOL and b) S-BINOL
S27: 1H-NMR spectra of L-phenyl lactic acid at 298 K in a) R-BINOL and b) S-BINOL
S28: 1H-NMR spectra of L-phenyl lactic acid at 240 K in a) R-BINOL and b) S-BINOL
S29: 1H-NMR spectra of S-2-hydroxy-3-methylbutyric acid at 298 K in a) R-BINOL and b) S-BINOL
S30: 1H-NMR spectra of S-2-hydroxy-3-methylbutyric acid at 240 K in a) R-BINOL and b) S-BINOL
S31: 1H-NMR spectra of S-2-hydroxy-3,3-domethylbutyric acid at 298 K in a) R-BINOL and b) S-BINOL
S32: 1H-NMR spectra of S-2-hydroxy-3,3-domethylbutyric acid at 240 K in a) R-BINOL and b) S-BINOL
S33: 1H-NMR spectra of L-lactic acid at 298 K in a) R-BINOL and b) S-BINOL
S34: 1H-NMR spectra of L-lactic acid at 240 K in a) R-BINOL and b) S-BINOL
S35: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent acetone-d_6
S36: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent acetonitrile-d_3
S37: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent DMSO-d_6
S38: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent benzene-d$_6$

S39: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent pyridine-d$_5$

S40: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent methanol-d$_4$

S41: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DABCO at 298 K in the solvent CDCl$_3$

S42: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DABCO at 298 K in the solvent CDCl$_3$

S43: 1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and TEA at 298 K in the solvent CDCl$_3$
Experimental Section: Initially one equivalent of carboxylic acid and DMPA were mixed to ensure that acid gets dissolved properly in CDCl$_3$ (500 µL). To this solution one equivalent of R-BINOL was added. The 1H-NMR spectrum of the resulting solution was recorded using a 400 MHz NMR spectrometer. The peaks were referenced to TMS as an internal standard. In order to achieve better solution the spectra were recorded at low temperatures and the respective temperature is mentioned in the figure caption.

S1
Table 1

Chemical shift difference ($\Delta \delta^{R,S}$) (in Hz) of α-proton obtained for (R/S)-4-trifluoromethyl-mandelic acid in solvents of different polarities in the presence of one equivalent each of DMAP and R-BINOL

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Chemical Shift Difference [{$\Delta \delta^{R,S}$} (in Hz)] *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDCl$_3$</td>
<td>11.0</td>
</tr>
<tr>
<td>Benzene-d$_6$</td>
<td>6.0</td>
</tr>
<tr>
<td>CD$_3$-CN</td>
<td>3.2</td>
</tr>
<tr>
<td>Acetone-d$_6$</td>
<td>2.0</td>
</tr>
</tbody>
</table>

*This value is zero in the solvents DMSO-d$_6$, Pyridine-d$_5$ and Methanol-d$_4$.

S2
Table 2: The enantiomeric excess measured from the proton 1H-NMR spectrum of Mandelic acid for the laboratory prepared samples of different scalemic ratios.

<table>
<thead>
<tr>
<th>Entry</th>
<th>δ_H (ppm) (R)</th>
<th>δ_H (ppm) (S)</th>
<th>Chemical shift difference ($\Delta \delta$) $^R/S$ (in Hz)</th>
<th>Integration $(R): (S)$ I_{maj}-I_{min}</th>
<th>ee % *</th>
<th>Laboratory prepared scalemic ratio with excess of R enantiomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>5.01</td>
<td>-</td>
<td>0</td>
<td>1.0:0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sample 2</td>
<td>5.00</td>
<td>4.98</td>
<td>11</td>
<td>1.0 :0.5550</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Sample 3</td>
<td>5.00</td>
<td>4.97</td>
<td>15</td>
<td>1.0 : 0.2369</td>
<td>62</td>
<td>64</td>
</tr>
<tr>
<td>Sample 4</td>
<td>5.0</td>
<td>4.97</td>
<td>14</td>
<td>1.0 : 1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample 5</td>
<td>4.94</td>
<td>4.89</td>
<td>32</td>
<td>1.0 : 0.031</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>Sample 6</td>
<td>4.94</td>
<td>4.89</td>
<td>32</td>
<td>1.0 : 0.011</td>
<td>97.8</td>
<td>98</td>
</tr>
<tr>
<td>Sample 7</td>
<td>4.92</td>
<td>4.86</td>
<td>32</td>
<td>1.0 : 0.006</td>
<td>98.8</td>
<td>99</td>
</tr>
</tbody>
</table>

Note: 1H NMR spectra of samples 5, 6 and 7 were recorded on a 800 MHz spectrometer with 2.5 equivalent of S-BINOL, 1 equivalent of mandelic acid and 1 equivalent of DABCO at 298 K.
800 MHz 1H-NMR spectrum of mandelic acid with excess of R enantiomer in the presence of 3 equivalent of R-BINOL and one equivalent of DABCO in the solvent CDCl$_3$ recorded at 298K. (The prepared scalemic ratios are 96 % R)
800 MHz 1H-NMR spectrum of mandelic acid with excess of R enantiomer in the presence of 3 equivalent of R-BINOL and one equivalent of DABCO in the solvent CDCl$_3$ recorded at 298K. (The prepared scalemic ratios are 98% R)
800 MHz 1H-NMR spectrum of mandelic acid with excess of R enantiomer in the presence of 3 equivalent of R-BINOL and one equivalent of DABCO in the solvent CDCl$_3$ recorded at 298K. (The prepared scalemic ratios are 99% R)
\(^1\)H-NMR spectrum of the racemic mixture of mandelic acid with one equivalent of \(R\)-BINOL and DMAP at 298 K

S7
1H-NMR spectrum of racemic mixture of alpha-methoxyphenylacetic acid with one equivalent of R-BINOL and DMAP at 298 K
1H-NMR spectrum of racemic mixture of Ibuprofen with one equivalent of R-BINOL and DMAP at 240 K
1H-NMR spectrum of racemic mixture of 4-(trifluoromethyl)mandelic acid with one equivalent of R-BINOL and DMAP at 298 K.

S10
1H-NMR 1D and 2D NMR spectra of racemic mixture of Tropic acid with one equivalent of R-BINOL and DMAP at 298 K
1H-NMR spectrum of racemic mixture of 3-hydroxybutyric acid with one equivalent of R-BINOL and DMAP at 298 K
1H-NMR spectrum of racemic mixture of 2-Hydroxy-3-methylbutyric acid with one equivalent of R-BINOL and DMAP at 298 K
1H-NMR spectrum of from racemic mixture of lactic acid with one equivalent of R-BINOL and DMAP at 298 K.
\[^{1}\text{H-NMR}\] spectrum of from racemic mixture of 2,3-dibromopropanoic acid with one equivalent of R-BINOL and DMAP at 298 K.

S15
1H-NMR spectrum of from racemic mixture of 2-chloropropanoic acid with one equivalent of R-BINOL and DMAP at 298 K
1H NMR spectra of R-mandelic acid and DABCO at 298K in a) R-BINOL and b) S-BINOL.
1H NMR spectra of R-mandelic acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of R-4-chloromandelic acid and DABCO at 298K in a) R-BINOL and b) S-BINOL
1H NMR spectra of R-4-chloro-mandelic acid and DABCO at 240K in a) R-BINOL and b) S-BINOL
1H NMR spectra of S-mandelic acid and DABCO at 298K in a) R-BINOL and b) S-BINOL.
1H NMR spectra of S-mandelic acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL.
\(^1\)H NMR spectra of S-2-chloromandelic acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of S-2-chloromandelic acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL.
1H NMR spectra of S-alpha-hydroxy-1,3-dioxo-2-isoindolinebutyric acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of S-alpha-hydroxy-1,3-dioxo-2-isoinodlinebutyric acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of L-phenyllactic acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of L-phenyllactic acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL

S28
1H NMR spectra of S-2-hydroxy-3-methylbutyric acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL.
1H NMR spectra of S-2-hydroxy-3-methylbutyric acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL

S30
1H NMR spectra of S-2-hydroxy-3,3-dimethylbutyric acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL.
1H NMR spectra of S-2-hydroxy-3,3-dimethylbutyric acid and DABCO at 240 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of L-lactic acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL
1H NMR spectra of L-lactic acid and DABCO at 298 K in a) R-BINOL and b) S-BINOL
\(^1 \text{H-NMR} \) spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent Acetone-D\(_6\)
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent Acetonitrile-D_3
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent DMSO-D$_6$
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent benzene-D_6
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent Pyridine-D$_5$
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent Methanol-D$_4$
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DABCO at 298 K in the solvent CDCl$_3$
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and TEA at 298 K in the solvent CDCl$_3$
1H-NMR spectrum of racemic mixture of mandelic acid with one equivalent of R-BINOL and DMAP at 298 K in the solvent CDCl$_3$.

S43