Supporting Information

One-pot synthesis of PrPO₄ nanorods/reduced graphene oxide composites and their photocatalytic properties

Hongwei Lv, Xiaoping Shen, Zhenyuan Ji, Kangmin Chen, Guoxing Zhu

a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
b School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

*Corresponding Author: Fax: (+86)511-88791800; Tel: (+86)511-88791800; E-mail: xiaopingshen@163.com (X. P. Shen).
Fig. S1 HRTEM images of PrPO$_4$/RGO nanocomposite.

Fig. S2 $(\alpha h\nu)^{1/2}$ vs. $h\nu$ curve deriving from UV-vis spectra of PrPO$_4$ nanorods.
Fig. S3 (a) XPS spectra of GO, PrPO$_4$ and PrPO$_4$/RGO; (b) and (c) C 1s XPS spectra of GO and PrPO$_4$/RGO, respectively; (d)-(f) Pr 3d, P 2p and O 1s regions, respectively.

Fig. S4 Plots of ln(C/C$_0$) versus irradiation time.
Fig. S5 The room temperature photoluminescence (PL) spectra of PrPO$_4$ and PrPO$_4$/RGO nanocomposites with different graphene content ($\lambda_{ex} = 468$ nm).

Fig. S6 Photocurrent response of PrPO$_4$, and PrPO$_4$/RGO nanocomposites with different amount of RGO.
Fig. S7 (a) Repeated photocatalytic degradation of MB with PrPO₄/RGO-25mg nanocomposite as a photocatalyst; (b) XRD patterns of PrPO₄/RGO-25mg nanocomposites after photocatalytic reaction and different cycling runs.

Fig. S8 The output wavelength spectrum of tungsten lamp.
Fig. S9 The adsorption-desorption equilibrium experiment of PrPO$_4$/RGO nanocomposites with different graphene content.