Materials are appeared on: New Journal of Chemistry

Supporting information for

Synthesis of Poly(2-hydroxyethyl methacrylate) End-Capped with Asymmetric Functional Groups via Atom Transfer Radical Polymerization

Chengmin Hou,a,b Shudong Lin,a,b Feng Liu,a,b Jiwen Hu,a,b,* Ganwei Zhang,a,b
Guojun Liu,a,c Yuanyuan Tu,a,b Hailiang Zou,a,b Hongsheng Luoa,b

aGuangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, P. R. China, 510650; bKey Laboratory of Cellulose Lignocellulosics Chemistry, University of Chinese Academy of Sciences, P. R. China, 510650; cDepartment of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.

The solubility of CuCl\textsubscript{2}/bpy Complex

CuCl\textsubscript{2} (5 mg) and bpy (30 mg) catalyst complexes were mixed with 1 mL of methanol, methanol/2-butanone (m/m=3:2, 2:3, or 1:4) or 2-butanone, and 300 \textmu L of these dissolved sample was diluted with 3 mL of corresponding solvent mixture. The solubility of these complexes was evaluated with UV-vis spectroscopy by comparing ultraviolet absorption intensity of these diluted samples.

The solubility of PHEMA Polymer

PHEMA with DP of 80 and 800 (0.1 g) was dispersed in 1 mL of methanol, methanol/2-butanone (m/m=3:2 and 2:3) or 2-butanone under shaking once in a while over 24 h at room temperature. The solubility of PHEMA in these solvents was directly evaluated.

Evaluation of Polymerization Degree (DP) of PHEMA Samples

As shown in Fig. S2, monomer conversion was calculated by
\[\text{conv.} = 2 \times \left(\frac{\delta_{4.34}}{2 - \delta_{5.58}} \right) / \delta_{4.34} \times 100\%, \]
the polymerization degree of was calculated by
\[DP = 2 \times \left(\frac{\delta_{4.34}}{2 - \delta_{5.58}} \right) / \delta_{4.67} \]
and molecular weight from 1H NMR spectra was obtained by
\[M_{n,\text{NMR}} = 130.14 \times DP + M_{\text{initiator}}. \]

*Corresponding author, e-mail: hjw@gic.ac.cn, Fax: 011-86-020-85232307, Phone: 86-020-85232307.
Fig. S1 1H NMR spectra of a) propargyl 2-bromoisobutyrate (PBiB), b) 3-(trimethylsilyl)propargyl 2-bromoisobutyrate (TMSPBiB), and c) 3-(triisopropylsilyl)propargyl 2-bromoisobutyrate (TiPSPBiB).

Fig. S2 1H NMR spectra of unpurified PHEMA with peaks assignment.

Fig. S3 1H NMR spectra of purified PHEMA.
Fig. S4 the solubility of a) CuCl$_2$/bpy in methanol (sample 1), methanol/2-butanone at 3:2 (sample 2), methanol/2-butanone at 2:3 (sample 3), methanol/2-butanone at 1:4 (sample 4) and 2-butanone (sample 5); the solubility of PHEMA with molecular weight of b) 10400 g/mol and c) 104000 g/mol in methanol (sample 1), methanol/2-butanone at 3:2 (sample 2), methanol/2-butanone at 2:3 (sample 3), and 2-butanone (sample 4).
Fig. S5. The relationship of $\ln(K_p^{app})$ and $1/T$ based on Arrhenius equation.

Fig. S6 The 1H NMR spectra of purified TMS-C≡C-PHEMA-Br and block copolymers PHEMA-\textit{b}-PBA and MPEG-\textit{b}-PHEMA.

Table S1 The total solubility parameter (δ), dispersion solubility parameter (δ_D), hydrogen bonding solubility parameter (δ_H) and polar solubility parameter (δ_P) of methanol, methanol/2-butanone at 3:2, 2:3 and 1:4 (m/m) and 2-butanone with those of PHEMA polymer.

<table>
<thead>
<tr>
<th>f\textsubscript{MEK}/%</th>
<th>f\textsubscript{MeOH}/%</th>
<th>δ/(\text{cal/cm}^3)(^{1/2})</th>
<th>δ_D/(\text{cal/cm}^3)(^{1/2})</th>
<th>δ_H/(\text{cal/cm}^3)(^{1/2})</th>
<th>δ_P/(\text{cal/cm}^3)(^{1/2})</th>
<th>δ_{w}/(\text{cal/cm}^3)(^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>14.49</td>
<td>7.42</td>
<td>6</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>12.402</td>
<td>7.56</td>
<td>5.36</td>
<td>7.54</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>11.358</td>
<td>7.63</td>
<td>5.04</td>
<td>5.86</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>10.314</td>
<td>7.7</td>
<td>4.72</td>
<td>4.18</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>9.27</td>
<td>7.77</td>
<td>4.4</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>PHEMA</td>
<td></td>
<td>11.38</td>
<td>7.75</td>
<td>5.76</td>
<td>7.22</td>
<td></td>
</tr>
</tbody>
</table>