Supporting Information

SnO₂ nanorods based sensing material as an isopropanol vapor sensor

Dan Hu a, Bingqian Han a, Rong Han a, Shaojuan Deng a, Yan Wang a, Qing Li a, Yude Wang a,b,*

a Department of Materials Science and Engineering, Yunnan University 650091, Kunming, People’s Republic of China

b State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China

* To whom all correspondence should be addressed.

Department of Materials Science and Engineering
Yunnan University, 650091 Kunming (China)
E-mail: ydwang@ynu.edu.de
Scheme S1. Schematic diagram of testing principle for SnO₂ nanorods gas sensors. V_H is heating voltage and R_H is heating resistance.

According to Scheme S1, the electrical resistance of sensor can be obtained as following:

$$ R = \frac{10 - V_o}{V_o} \cdot R_L $$

where R is the resistance of the sensor, R_L is a constant load resistance unchanged with the surrounding gas partial pressure, V_o is the sensor export voltage. The gas response β was defined as the ratio of the electrical resistance in air (R_o) to that in gases (R_g):

$$ R_o = \frac{10 - (V_o)_{air}}{(V_o)_{air}} \cdot R_L, \quad R_g = \frac{10 - (V_o)_{gas}}{(V_o)_{gas}} \cdot R_L, \quad \beta = \frac{R_o}{R_g} $$

where $(V_o)_{air}$ is the export voltage in air, and $(V_o)_{gas}$ is in gases.
Scheme S2. A schematic diagram of the proposed reaction mechanism of porous SnO$_2$ nanorods based sensor to IPA. (a) in dry air, (b) in IPA.
Figure S1 Nitrogen adsorption/desorption isotherm of SnO$_2$ nanorods