Electronic supplementary information for New Journal of Chemistry

New highly electrodeficient cationic fluorescent tetrazines: A step toward the strongest purely organic photooxidants.

Eva Jullien-Macchi, Clémence Allain*, Valérie Alain-Rizzo, Cécile Dumas-Verdes, Laurent Galmiche, Jean-Frédéric Audibert, Mulu Berhe Desta, Robert Bernard Pansu and Pierre Audebert*

Authors address: PPSM, CNRS UMR 8531, Ecole Normale Supérieure de Cachan, 61, avenue du Président Wilson, 94235 Cachan cedex, France.

Contents:

NMR spectra

UV-Vis absorption and fluorescence emission spectra

Fluorescence decays

Time-resolved quenching experiments

Fluorescence on the solid state
NMR spectra

Figure 1: 1H NMR of 3,6-bis(1-N-ethyl-imidazolium)-s-tetrazine tetrafluoroborate 1

Figure 2: 13C NMR of 3,6-bis(1-N-ethyl-imidazolium)-s-tetrazine tetrafluoroborate 1
Figure 3: 1H NMR of 3,6-bis(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate 2

Figure 4: 13C NMR of 3,6-bis(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate 2
Figure 5: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-imidazolyl)-s-tetrazine 3n

Figure 6: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-imidazolyl)-s-tetrazine 3n
Figure 7: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-N-methyl-imidazolium)-s-tetrazine trifluoromethanesulfonate 3

Figure 8: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-N-methyl-imidazolium)-s-tetrazine trifluoromethanesulfonate 3
Figure 9: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-benzimidazolyl)-s-tetrazine 4n

Figure 10: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-benzimidazolyl)-s-tetrazine 4n
Figure 11: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate 4

Figure 12: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate 4
Figure 13: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)benzimidazolyl)-s-tetrazine 5n

Figure 14: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)benzimidazolyl)-s-tetrazine 5n
Figure 15: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)-N-methylbenzimidazolium)-s-tetrazine trifluoromethanesulfonate 5

![H NMR spectrum](image)

Figure 16: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)-N-methylbenzimidazolium)-s-tetrazine trifluoromethanesulfonate 5

![C NMR spectrum](image)
Figure 17 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-(5-chloro)benzimidazolyl)-s-tetrazine 6n

Figure 18 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-(5-chloro)benzimidazolyl)-s-tetrazine 6n
Figure 19: 1H NMR of 6-(methoxyadamantan-1-yl)-3-(1-(5-chloro)benzimidazolium)-s-tetrazine trifluoromethanesulfonate 6

![Figure 19](image1.png)

Figure 20: 13C NMR of 6-(methoxyadamantan-1-yl)-3-(1-(5-chloro)benzimidazolium)-s-tetrazine trifluoromethanesulfonate 6

![Figure 20](image2.png)
UV-Vis absorption and fluorescence emission spectra

Figure 21: UV-Vis absorption spectra of tetrazines 1-6 in acetonitrile.

Expanded plot of the absorbance between 400 and 600nm (n-\(\pi^*\) transition):
Figure 22: Normalized fluorescence emission spectra of tetrazine 1-4 in acetonitrile (excitation 500 nm for 1-3, 512 nm for 4, 490 nm for 5 and 6).

Fluorescence decays

Figure 23: Fluorescence decay of 3,6-bis(1-N-ethyl-imidazolium)-s-tetrazine tetrafluoroborate 1 in acetonitrile (excitation 355 nm, emission 515 nm)

\(\tau = 108 \text{ ns} \quad \chi^2 = 0.956 \)
Figure 24: Fluorescence decay of 3,6-bis(1-N-methyl-benzimidazolium)-s-tetrazine trifluoromethanesulfonate 2 in acetonitrile (excitation 355 nm, emission 541 nm)

\[\tau = 41 \text{ ns} \quad \chi^2 = 1.03 \]

Figure 25: Fluorescence decay of 6-(methoxyadamantan-1-yl)-3-(1-N-methyl-imidazolium)-s-tetrazine trifluoromethanesulfonate 3 in acetonitrile (excitation 355 nm, emission 565 nm)

\[\tau = 156 \text{ ns} \quad \chi^2 = 0.97 \]
Figure 26: fluorescence decay of 6-(methoxyadamantan-1-yl)-3-(1-N-methylbenzimidazolium)-s-tetrazine trifluoromethanesulfonate 4 in acetonitrile (excitation 355 nm, emission 555 nm)

\[\tau = 125 \text{ ns} \ \chi^2 = 1.05 \]

Figure 27: fluorescence decay of 6-(methoxyadamantan-1-yl)-3-(1-(2-nonyl)-N-methylbenzimidazolium)-s-tetrazine trifluoromethanesulfonate 5 in dichloromethane (excitation 355 nm, emission 575 nm)

\[\tau = 122 \text{ ns} \ \chi^2 = 1.08 \]
Figure 28: fluorescence decay of 6-(methoxyadamantan-1-yl)-3-(1-(5-chloro)benzimidazolium)-s-tetrazine trifluoromethanesulfonate 6 in dichloromethane (excitation 355 nm, emission 565 nm)

\[\tau = 110 \text{ ns} \quad \chi^2 = 1.08 \]

Time-resolved quenching experiments

Figure 29: Fluorescence decays of tetrazine 1 (4.0 \times 10^{-4} \text{ M} in acetonitrile) in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)
Figure 30: Fluorescence decays of tetrazine 2 (2.7×10^{-4} M in acetonitrile) in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)

Figure 31: Fluorescence decays of tetrazine 3 (2.0×10^{-4} M in acetonitrile) in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)
Figure 3: Fluorescence decays of tetrazine 4 (1.5 \times 10^{-4} \text{M}) in acetonitrile in the presence of increasing amounts of benzene (excitation 532 nm, emission 560 nm)
Fluorescence on the solid state

Figure 33: Scheme of the home-made perfusion chamber used for the quenching experiments by benzene vapors. A concentration of 1mmol benzene/L air is obtained upon a 5% v/v benzene solution in squalane at 293K.