One-pot and highly regio-selective 1, 3-dipole cycloaddition of azomethine ylide generated in situ to tetraethyl vinylidenebisphosphonate (VBP) catalyzed by cerium(IV) oxide

Guozhu Li, Mingshu Wu†, Dulin Kong, Rendie Liu, Xueming Zhou and Fengjiao Liu

Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P.R. China

1. General Information
All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker Avance III (1H: 400 MHz, 13C: 100.6 MHz), 31P NMR spectra were recorded with a Bruker Avance III spectrometer at 162MHz (external standard 85% H3PO4), chemical shifts (δ) are expressed in ppm, and J values are given in Hz, and CDCl3 were used as solvents. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF254. EI-MS (70eV): esquire HCT-Agilent 1200 mass spectrometer. IR spectra were recorded on a Thermo Scientific Nicolet 6700 Fourier IR spectrometer (ATIR) in KBr pellet. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (300–400 mesh). Tetraethyl vinylidenebisphosphonate (VBP) were prepared according to the literature1. Other materials were purchased from Aladdin-reagent Corporation Limited.

2. General Procedure
To a stirred solution of VBP (1 mmol, 0.3g) with benzaldehyde (1.2mmol) and L-proline (1.5mmol, 0.17 g) in toluene (2 mL) were added CeO2 (5%mmol, 0.05mmol, 0.0086 g). The mixture was heated at 80°C and the progress of the reaction was monitored by TLC. As the reaction completed, silica gel (0.5 g) was added to the reaction mixture and the desired product was separated and purified by column chromatography on silica gel using petroleum ether(60–90)/ethyl acetate(1/2–1/5 v/v) as eluents.

The products were further identified by NMR, MS and IR, being in good agreement with the assigned structures.

Tetraethyl (3-phenylhexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate) (1)

Yellow oil

1H NMR (CDCl3, 400 MHz): δ(ppm) = 1.25-1.28 (m, 12H), 1.87-1.93 (m, 2H), 2.01-2.03 (m, 1H), 2.27-2.3 (m, 1H), 2.52-2.62 (2H), 2.73-2.85 (2H), 4.04-4.18 (10H), 7.15-7.16 (1H), 7.21-7.24 (2H), 7.32-7.34 (2H).

†Corresponding author. tel.: +8613518886382;
e-mail: wmsh@hainnu.edu.cn.
This journal is © The Royal Society of Chemistry 2014

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.77 & 25.62.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 16.23 (P-O-C-CH$_3$), 16.29 (P-O-C-CH$_3$), 16.34 (P-O-C-CH$_3$), 16.40 (P-O-C-CH$_3$), 28.31(CH$_2$), 28.60 (t, $J = 6.4$ Hz, P-C-C-CH$_2$), 43.52 (t, $J = 4.79$Hz, P-C-C-N-CH$_2$), 48.89 (t, $J = 141.7$ Hz, P-C-P), 52.07, 62.63 (P-O-CH$_2$), 62.71 (P-O-CH$_2$), 62.80 (P-O-CH$_2$), 63.05 (d, $J = 6.76$Hz, P-O-CH$_2$), 68.45 (d, $J = 10.08$Hz, P-C-C-CH$_2$), 69.43, 126.84, 126.91, 128.16, 143.28.

IR: 1240.45 (P=O), 1067.68 (P-O-C).

MS calcd for 460.20 (MH$^+$), found: 460.3.

Yield: 68%.

Tetraethyl (3-(p-tolyl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate) (2)

Yellow oil

1H NMR (CDCl$_3$, 400 MHz): δ(ppm) = 1.23-1.31 (m, 12H), 1.82-1.91 (m, 2H), 1.99-2.01 (m, 1H), 2.23 (s, 3H), 2.30-2.34 (m, 1H), 2.43-2.61 (2H), 2.67-2.84 (2H), 3.96-4.27 (10H), 7.02-7.04 (2H), 7.20-7.22 (2H).

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.74 & 25.80.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 16.22 (P-O-C-CH$_3$), 16.28 (P-O-C-CH$_3$), 16.32 (P-O-C-CH$_3$), 16.38 (P-O-C-CH$_3$), 20.88 (CH$_3$), 28.25(CH$_2$), 28.58 (t, $J = 6.3$ Hz, P-C-C-CH$_2$), 43.45 (t, $J = 4.4$Hz, P-C-C-N-CH$_2$), 48.76 (t, $J = 136.1$ Hz, P-C-P), 51.99, 62.39 (P-O-CH$_2$), 62.47 (P-O-CH$_2$), 62.58 (P-O-CH$_2$), 63.06 (d, $J = 6.9$Hz, P-O-CH$_2$), 68.28 (d, $J = 9.4$Hz, P-C-C-CH$_2$), 69.31, 126.78, 128.85, 136.43, 140.11.

IR ν: 1244.17 (P=O), 1061.20 (P-O-C).

MS calcd for 474.22 (MH$^+$), found: 474.4; MS calcd for 496.20 (MNa$^+$), found: 496.4.

Yield: 70%.

Tetraethyl(3-(4-methoxyphenyl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate)(3)

Yellow oil
1H NMR (CDCl$_3$, 400 MHz): δ(ppm) = 1.27-1.38 (m, 12H), 1.68-1.76 (m, 2H), 1.89-2.08 (m, 2H), 2.33-2.34 (m, 1H), 2.54-2.61 (1H), 2.73-2.88 (2H), 3.78 (s, 3H), 4.03-4.24 (10H), 6.81-6.85 (2H), 7.29-7.32 (2H).

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.74 & 25.75.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 16.44 (P-O-C-CH_3), 16.47 (P-O-C-CH_3), 16.49 (P-O-C-CH_3), 16.52 (P-O-C-CH_3), 28.34(CH_2), 28.77 (d, J = 4.5 Hz, P-C-C-CH_3), 43.51 (t, J = 4.8Hz, P-C-C-N-CH_2), 48.88 (t, J = 136.4 Hz, P-C-P), 52.13, 55.27 (CH_3), 62.66 (P-O-CH_2), 62.75 (P-O-CH_2), 62.84 (P-O-CH_2), 63.30 (d, J = 6.7Hz, P-O-CH_2), 68.21 (d, J = 9.5Hz, P-C-C-CH), 69.38, 113.78, 128.18, 135.00, 158.86.

IR: 1246.21 (P=O), 1033.38 (P-O-C).

MS calcd for 490.21 (MH$^+$), found: 490.4; MS calcd for 512.19 (MNa$^+$), found: 512.4.

Yield: 55%.

Tetraethyl (3-(4-bromophenyl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate) (4)

Brown oil

1H NMR (CDCl$_3$, 400 MHz): δ(ppm) = 1.23-1.31 (m, 12H), 1.86-1.91 (m, 2H), 1.94-2.02 (m, 2H), 2.25-2.29 (m, 1H), 2.45-2.51 (m, 1H), 2.74-2.82 (m, 2H), 3.96-4.23 (m, 10H), 7.19-7.22 (m, 2H), 7.31-7.34 (m, 2H).

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.57 & 25.59.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 16.19 (P-O-C-CH_3), 16.24 (P-O-C-CH_3), 16.30 (P-O-C-CH_3), 16.37 (P-O-C-CH_3), 28.38(CH_2), 28.49 (t, J = 6.0 Hz, P-C-C-CH_2), 43.53 (t, J = 4.3Hz, P-C-C-N-CH_2), 48.80 (t, J = 136.2 Hz, P-C-P), 52.00, 62.42 (P-O-CH_2), 62.49 (P-O-CH_2), 62.58 (P-O-CH_2), 63.05 (d, J = 6.9Hz, P-O-CH_2), 67.81 (d, J = 9.7Hz, P-C-C-CH), 69.42, 120.42, 128.55, 131.16, 142.51.

IR: 1242.92 (P=O), 1063.22 (P-O-C).

MS calcd for 438.11 (MH$^+$), found: 538.3; MS calcd for 560.09 (MNa$^+$), found: 560.3.

Yield: 45%.

Tetraethyl (3-(4-chlorophenyl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate) (6)
Black oil

1H NMR (CDCl$_3$, 400 MHz): δ(ppm) = 1.25-1.32 (m, 12H), 1.87-1.96 (m, 2H), 2.00-2.92 (m, 1H), 2.26-2.30 (m, 1H), 2.46-2.58 (m, 2H), 2.74-2.84 (m, 2H), 4.01-4.20 (m, 10H), 7.17-7.19 (d, 2H, $J = 8.4$Hz), 7.26-7.28 (d, 2H, $J = 8.2$Hz).

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.58 & 25.51.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 16.34 (P-O-C-CH$_3$), 16.40 (P-O-C-CH$_3$), 16.46 (P-O-C-CH$_3$), 16.52 (P-O-C$,\text{CH}_3$), 28.53(CH$_2$), 28.67 (t, J = 4.4 Hz, P-C-C-CH$_2$), 43.62 (t, J = 4.3Hz, P-C-C-N-CH$_2$), 48.80 (t, J = 136.2 Hz, P-C-P), 52.00, 62.65 (P-O-CH$_2$), 62.71 (P-O-CH$_2$), 62.78 (P-O-CH$_2$), 63.27 (d, J = 6.9Hz, P-O-CH$_2$), 67.95 (d, J = 9.8Hz, P-C-C-CH$_2$), 128.37, 128.40, 132.57, 141.87.

MS calcd for 438.11 (MH$^+$), found: 538.3; MS calcd for 560.09 (MNa$^+$), found: 560.3.

IR: 1241.32 (P=O), 1072.74 (P-O-C)

Yield: 45%.

Tetraethyl (3-(4-fluorophenyl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate)(7)

Yellow oil

1H NMR (CDCl$_3$, 400 MHz): δ(ppm) = 1.25-1.31 (m, 12H), 1.86-1.91 (m, 2H), 1.99-2.02 (m, 1H), 2.26-2.31 (m, 1H), 2.48-2.52 (m, 2H), 2.71-2.82 (m, 2H), 3.99-4.21 (m, 10H), 6.17-6.91(t, 2H, $J = 2.2$Hz), 7.27-7.30 (m, 2H).

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.69 & 25.67.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 15.26 (P-O-C-CH$_3$), 15.32 (P-O-C-CH$_3$), 15.37 (P-O-C-CH$_3$), 15.43 (P-O-C$,\text{CH}_3$), 27.40(CH$_2$), 27.62 (t, J = 6.2 Hz, P-C-C-CH$_2$), 42.72 (t, J = 4.1Hz, P-C-C-N-CH$_2$), 47.88 (t, J = 136.2 Hz, P-C-P), 51.05, 61.46 (P-O-CH$_2$), 61.55 (P-O-CH$_2$), 61.62 (P-O-CH$_2$), 62.11 (d, J = 6.8Hz, P-O-CH$_2$), 66.84 (d, J = 9.8Hz, P-C-C-CH$_2$), 68.42, 113.92 (d, J = 21.1Hz, F-C-CH$_2$), 127.35 (d, J = 7.9 Hz, F-C-
C-CH), 138.01, 160.86 (d, J = 244.3Hz, F-C).
IR: 1241.95 (P=O), 1059.55(P-O-C).
MS calcd for 478.19 (MH⁺), found: 478.5.
Yield: 60%.

Tetraethyl (3-(2,2'-dihydroxy-[1,1'-(S)-binaphthalen]-3-yl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate) (8)

Yellowish oil

1H NMR (CDCl₃, 400 MHz): δ(ppm) = 1.10-1.46 (m, 12H), 1.84-1.95 (m, 1H), 2.00-2.03 (m, 1H), 2.14-2.20 (m, 1H), 2.35-2.48 (m, 1H), 2.75-2.81 (m, 1H), 2.84-2.96 (m, 2H), 3.05-3.10 (m, 1H), 4.05-4.35 (m, 9H), 4.56-4.61 (m, 1H), 7.09-7.23(m, 4H), 7.25-7.30 (m, 2H), 7.35 (d, 1H, J = 8.84Hz), 7.66 (s, 1H), 7.76 (d, 2H, J = 7.76Hz), 7.83 (d, 1H, J = 8.12Hz), 7.86 (d, 1H, J = 8.92Hz).

31P NMR (CDCl₃/H₃PO₄, 162.0 MHz): δ (ppm) = 23.67.

13C NMR (CDCl₃, 100.6 MHz): δ(ppm) = 15.26 (P-O-C-CH₃), 15.32 (P-O-C-CH₃), 15.37 (P-O-C-CH₃), 15.43 (P-O-C-CH₃), 28.40(CH₂), 28.72, 42.38, 49.80 (t, J = 136.9 Hz, P-C-P), 51.96, 63.29 (P-O-CH₂), 63.38 (P-O-CH₂), 63.45 (P-O-CH₂), 63.70 (d, J = 5.9Hz, P-O-CH₂), 68.97, 70.12, 113.22, 115.55, 117.70, 123.10, 123.49, 124.35, 125.29, 125.89, 126.14, 127.00, 127.85, 128.08, 128.16, 129.10, 129.33, 129.71, 133.59, 133.98, 151.26, 155.40.
IR: 1251.60 (P=O), 1041.23(P-O-C)

MS calcd for 668.25 (MH⁺), found: 668.4; MS calcd for 690.24 (MNa⁺), found: 690.3
Yield: 30%.

Tetraethyl (3-(4-(trifluoromethyl)phenyl)hexahydro-1H-pyrrolizine-1,1-diyl)bis(phosphonate) (9)
Yellow oil

1H NMR (CDCl$_3$, 400 MHz): δ(ppm) = 1.17-1.28 (m, 12H), 1.83-1.88 (m, 2H), 1.97-1.99 (m, 1H), 2.24-2.28 (m, 1H), 2.45-2.47 (m, 2H), 2.76-2.79 (m, 2H), 4.02-4.18 (m, 10H), 7.41 (s, 4H).

31P NMR (CDCl$_3$/H$_3$PO$_4$, 162.0 MHz): δ (ppm) = 24.51 & 25.41.

13C NMR (CDCl$_3$, 100.6 MHz): δ(ppm) = 16.06 (P-O-C-CH$_3$), 16.12 (P-O-C-CH$_3$), 16.15 (P-O-C-CH$_3$), 16.19 (P-O-C-CH$_3$), 28.44(CH$_2$), 28.49, 43.71, 49.01 (t, J = 134.5 Hz, P-Ç-P), 52.07, 62.31 (P-O-CH$_2$), 62.37 (P-O-CH$_2$), 62.44 (P-O-CH$_2$), 62.99 (d, J = 6.7Hz, P-O-CH$_2$), 67.94 (d, J = 10.0Hz, P-C-C-CH$_3$), 69.62, 124.95 (d, J = 271.8Hz, F-Ç), 124.95 (d, J = 3.6 Hz, F-C-C-CH), 126.99, 128.74 (q, J = 32.0Hz, F-C-Ç), 148.05.

MS calcd for 528.19 (MH$^+$), found: 528.5.

Yield: 55%.

1H NMR of 1

31P NMR of 1
13C NMR of 1

13CDEPT of 1
HSQC of 1

HMBC of 1
1H-1H COSY of 1

1H NMR of 2
31P NMR of 2

13C NMR of 2

1H NMR of 3
31P NMR of 3

13C NMR of 3

1H NMR of 4
31P NMR of 4

13C NMR of 4
1H NMR of 6

31P NMR of 6

13C NMR of 6
1H NMR of 7

31P NMR of 7

13C NMR of 7
1H NMR of 8

31P NMR of 8

13C NMR of 8
HSQC of 8

HMBC of 8
ROESY of 8

1H NMR of 9

31P NMR of 9
13C NMR of 9