Electronic Supplementary Material

A highly selective dual-channel chemosensor for mercury ions: utilization of the mechanism of intramolecular charge transfer blocking

YouMing Zhang, WenJuan Qu, GaoGuo Ying, BingBing Shi, WuGui Yuan, TaiBao Wei*, Qi Lin, Hong Yao

Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education,
Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

*Fax: +86 9317973191; Tel: +86 9317973191; E-mail: weitaibao@126.com
Fig. S1 Absorbance histogram data for a 1:20 mixture of ATS (2.0×10^{-5} M) and different metal ions as their perchlorate salts, in DMSO solution, acquired after 120 min.
Fig. S2 Fluorescence emission data for a 1:20 mixture of **ATS** (2.0×10⁻⁵ M) and different metal ions as their perchlorate salts, in DMSO solution, acquired after 120 min. (excitation wavelength = 345 nm).
Fig. S3 Time-dependent absorbance spectra of ATS (2.0×10^{-5} M) upon addition of Hg$^{2+}$ (20 equiv.) in DMSO. (a) Absorbance emission spectra: from top to bottom spectra were recorded after 120 min. (b) A plot of absorbance as estimated by the peak height at 403 nm and 345 nm.
Fig. S4 IR spectra of compound **ATS** and after adding Hg$^{2+}$ in KBr disks.
Fig. S5 Absorbance spectra of α-naphthylamine (2.0×10⁻⁵ M) and after addition Hg²⁺ in DMSO.
Fig. S6 Fluorescence spectra upon excitation at 345 nm in DMSO of α-naphthylamine (2.0×10⁻⁵ M) and after addition of Hg²⁺.
Fig. S7 1H-NMR spectrum of ATS in DMSO.
Fig. S8 13C-NMR spectrum of ATS in DMSO.
Fig. S9 ESI-MS spectrum of ATS in DMSO.
Fig. S10 ESI-MS spectrum in the presence of Hg$^{2+}$ in DMSO.
Fig. S11 The 1H NMR spectrum of the 5-(4-Nitrophenyl)-2-furan formaldehyde.
Determination of the detection limit

We use the 3δ way to figure out the detection limit. The process of the analysis as follows.

The photograph of the linear range

\[
\begin{align*}
\text{Linear Equation: } & Y=0.3429X-0.0292 \quad R=0.986 \\
S=3.429\times10^5 \quad \delta=\sqrt{\frac{\sum(F-\overline{F})^2}{(N-1)}}=0.060266 \ (N=16) \quad K=3 \\
\text{LOD}=K \times \delta/S=5.27\times10^{-7} \text{ M}
\end{align*}
\]