Viologen phosphorus dendritic molecule as carrier of ATP and Mant-ATP. Spectrofluorimetric and NMR studies.

Aleksandra Szulca*, Maria Zablocka*b, Yannick Coppelc, Christian Bijanid, Wojciech Dabkowski*, Maria Bryszewska*, Barbara Klajnert-Maculewicz*, Jean-Pierre Majoralc*‡

a Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

b Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.

c Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4, France.

*Authors contributed equally

‡ Corresponding author

Electronic Supplementary Information (ESI) available: DOI: 10.1039/b000000x/

Figure S1. Full 1H NMR titration spectra of the dendrimer when mixed with ATP. The concentration of the dendrimer was kept constant at 1.2 mmol/L. The molar ratio of ATP – dendrimer ranges from 0 to 10 (1-7).

Figure S2. Expanded aliphatic region of the 1H NMR titration spectra of the dendrimer when mixed with ATP. The concentration of the dendrimer was kept constant at 1.2 mmol/L. The molar ratio of ATP – dendrimer ranges from 0 to 10 (1-7).
Figure S3. £H NMR titration spectra of the viologen dendrimer part when mixed with ATP. The concentration of the dendrimer was kept constant at 1.2 mmol/L. The molar ratio of ATP – dendrimer ranges from 0 to 10 (1-7).

Table S1. Comparison of the maximum chemical shift difference (ppm), $\delta_{\text{init}} - \delta_{\text{final}}$ of the dendrimer £H resonances on titration with ATP.

<table>
<thead>
<tr>
<th>Hydrogen position</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
<th>H11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical shift difference</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Figure S4. Full £H-£H ROESY spectrum of the 1/4 dendrimer – ATP mixture.

Figure S5. Mass Spectrometry of the ATP – dendrimer complex showing the formation of a 2/1 complex. Spectra were recorded on a Xevo-G2QTOF (Waters) on ESI(+), Flow Injection Analysis (0.15 mL/min) in 100% MeOH (from 100 to 3000 m/z).