Supporting Information

Plant Leaf-Derived Graphene Quantum Dots and application for white LEDs

Prathik Roya, Arun Prakash Periasamya, Chiashain Chuangb, Yi-Rou Lioub, Yang-Fang Chenb, Joseph Jolyc, Chi-Te Liangb & Huan-Tsung Changa

aDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan

bDepartment of Physics, National Taiwan University, Taipei 106, Taiwan

cDepartment of Nanotechnology, Noorul Islam University, Kumaracoil 629180, Tamilnadu, India

Correspondence: Correspondence and requests for materials should be addressed to H.T.C. (email: changht@ntu.edu.tw) or C.T.L. (ctliang@phys.ntu.edu.tw).
Supplementary Figure S1. (a) EDAX spectrum of the as-prepared N-GQDs. XRD spectrum (b) of N-GQDs, N-GO and (c) F-GQDs, F-GO.
Supplementary Figure S2. UV-Vis absorption spectra of (a) N-GO, F-GQDs and N-GQDs, (b) Quinine Sulfate (QS) and (c) Chlorophyll (CPY).
Supplementary Figure S3. Time-resolved PL decay profiles of (a) N-GQDs and (b) F-GQDs and (c) N-GQD/QS/CPY
Supplementary Figure S4. Illustration of the coating procedure of the N-GQD/QS/CPY emissive material onto the PET cap and light emission in the presence and absence of coating.
Supplementary Figure S5: PL spectrum of the uncoated PET cap.
Supplementary Figure S6: Photostability of the N-GQD/QS/CPY emissive material under illumination with a Xe lamp. PL wavelength at 440 nm ($\lambda_{ex} = 365$ nm).
<table>
<thead>
<tr>
<th>Material</th>
<th>τ_1 (ns)</th>
<th>Percentage (%)</th>
<th>τ_2 (ns)</th>
<th>Percentage (%)</th>
<th>Average τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-GQDs</td>
<td>15.33 ± 0.21</td>
<td>57.84</td>
<td>3.10 ± 0.37</td>
<td>42.16</td>
<td>10.04</td>
</tr>
<tr>
<td>F-GQDs</td>
<td>14.09 ± 0.13</td>
<td>53.74</td>
<td>3.07 ± 0.29</td>
<td>46.26</td>
<td>8.99</td>
</tr>
<tr>
<td>N-GQD/QS/CPY</td>
<td>12.16 ± 0.18</td>
<td>24.55</td>
<td>4.15 ± 0.08</td>
<td>75.45</td>
<td>6.03</td>
</tr>
</tbody>
</table>

Supplementary Table S1: Lifetimes of GQDs and N-GQD/QS/CPY calculated from their corresponding time-resolved decay profiles

*PL decay curves were fitted to a two-exponential function: $I(t) = A_1\exp(-t/\tau_1) + A_2\exp(-t/\tau_2)$

Quantum Yield equation:

$$\Phi = \Phi_R \frac{I}{I_R} \frac{E_R n_R^2}{E n^2},$$

where Φ denotes quantum yield, I is integrated fluorescence intensity, E is extinction co-efficient, n= refractive index and the index R indicates the standard.