Synthesis and Use of “Clickable” Bay-region Tetrasubstituted Perylene tetracarboxylicacid tetraesters and a Perylene monoimide diester as Energy Acceptors

Edanur Aydin, Bilal Nisanci, Murat Acar, Arif Dastan, and Ozgur Altan Bozdemir*

Department of Chemistry, Ataturk University, Erzurum, 25240, TURKEY

E-mail: oaltanbozdemir@atauni.edu.tr
UV-Vis Absorption and Fluorescence Spectra:

Fig. S1: Absorbance spectra of compounds 2, 4 and LH-1 in CHCl₃. The concentrations of compounds 2 and 4 were adjusted so that they have equal absorbances at 320 nm and 459 nm with LH-1.

Fig. S2: Absorbance spectra of compounds 2, 8 and LH-2 in CHCl₃. The concentrations of compounds 2 and 8 were adjusted so that they have equal absorbances at 320 nm and 492 nm with LH-2.
Fig. S3: Absorbance spectra of compounds 2, 9 and LH-3 in CHCl₃. The concentrations of compounds 2 and 9 were adjusted so that they have equal absorbances at 320 nm and 540 nm with LH-3.

Fig. S4: Fluorescence emission spectra of the mixture of compounds 2 and 4, and LH-1 upon excitation at 315 nm in CHCl₃. The concentrations of compounds 2 and 4 in the mixture were adjusted so that they have equal absorbances at 320 nm and 459 nm with LH-1.
**Fig. S5:** Fluorescence emission spectra of the mixture of compounds 2 and 8, and LH-2 upon excitation at 315 nm in CHCl₃. The concentrations of compounds 2 and 8 in the mixture were adjusted so that they have equal absorbances at 320 nm and 492 nm with LH-2.

**Fig. S6:** Fluorescence emission spectra of a mixture of compounds 2 and 9, and LH-3 upon excitation at 315 nm in CHCl₃. The concentrations of compounds 2 and 9 in the mixture were adjusted so that they have equal absorbances at 320 nm and 540 nm with LH-3.
$^1$H, $^{13}$C NMR, and HR-MS Spectra:

Fig. S7: $^1$H and $^{13}$C NMR spectra of compound 4.
Fig. S8: $^1$H and $^{13}$C NMR spectra of LH-1.
Fig. S9: $^1$H and $^{13}$C NMR spectra of compound 8.
Fig. S10: $^1$H and $^{13}$C NMR spectra of compound 9.
Fig. S11: $^1$H and $^{13}$C NMR spectra of LH-2.
Fig. S12: $^1$H and $^{13}$C NMR spectra of LH-3.
**Fig. S13**: HR-ESI mass spectrum of compound 4.

**Fig. S14**: HR-ESI mass spectrum of compound 8.

**Fig. S15**: HR-ESI mass spectrum of compound 9.
Fig. S16: HR-ESI mass spectrum of LH-1.

Fig. S17: HR-ESI mass spectrum of LH-2.

Fig. S18: HR-ESI mass spectrum of LH-3.
**Fig. S19:** Time-dependent fluorescence decay spectra of 1. IRF (instrument response function)

**Fig. S20:** Time-dependent fluorescence decay spectra of 2. IRF (instrument response function)
**Fig. S21:** Time-dependent fluorescence decay spectra of 4. IRF (instrument response function)

**Fig. S22:** Time-dependent fluorescence decay spectra of LH-1. IRF (instrument response function)
**Fig. S23:** Time-dependent fluorescence decay spectra of 8. IRF (instrument response function)

**Fig. S24:** Time-dependent fluorescence decay spectra of 9. IRF (instrument response function)
Fig. S25: Time-dependent fluorescence decay spectra of LH-2. IRF (instrument response function)

Fig. S26: Time-dependent fluorescence decay spectra of LH-3. IRF (instrument response function)