ELECTRONIC SUPPORTING INFORMATION (ESI)

Design and synthesis of sugar-triazole based uracil appended sugar-imine derivatives – An application in DNA binding studies

Arasappan Hemamalini\(^a\), Ettayapuram Ramaprasad Azhagiya Singham\(^b\), Sathish kumar Mudedla\(^b\), Venkatesan Subramanian\(^b\), Thangamuthu Mohan Das\(^{a,c,*}\)

\(^a\)Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai – 600 025, INDIA.

\(^b\)Chemical Laboratory, Central Leather Research Institute (CSIR) Adyar, Chennai- 600 020, INDIA

\(^c\)Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur -610 004; Ph. No. +919489054278; Fax 04366 – 225312; E-mail: tmohandas@cutn.ac.in

Table 1 Spectral data and optimization of reaction condition of sugar-triazole derivatives, 6-9

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>R</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>(\delta_{\text{Ano-H}}) /ppm</th>
<th>(\delta_{\text{Ald-H}}) /ppm</th>
<th>(\delta_{\text{Trz-H}}) /ppm</th>
<th>(\delta_{\text{Trz-C}}) /ppm</th>
<th>(\Delta(\delta_{C4}-\delta_{C5}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-H</td>
<td>24</td>
<td>85</td>
<td>5.91-5.88</td>
<td>10.48</td>
<td>7.92</td>
<td>121.5, 144.1</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>-OCH(_3)</td>
<td>26</td>
<td>79</td>
<td>5.89-5.86</td>
<td>9.86</td>
<td>7.91</td>
<td>144.0, 121.7</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>-Cl</td>
<td>20</td>
<td>74</td>
<td>5.90-5.87</td>
<td>10.39</td>
<td>7.91</td>
<td>143.6, 121.6</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>-OH</td>
<td>24</td>
<td>83</td>
<td>5.91-5.88</td>
<td>9.98</td>
<td>7.88</td>
<td>144.4, 121.2</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 2 Spectroscopic data and optimization of reaction condition of sugar-imine derivatives, 11-14

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>(\delta_{\text{Ano-H}})/ppm, (J_{\text{H,H,H}}) Hz</th>
<th>(\delta_{\text{Trz-H}}) /ppm</th>
<th>(\delta_{\text{Imin-H}}) /ppm</th>
<th>(\delta_{\text{Imin-C}}) /ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>-H</td>
<td>1</td>
<td>56</td>
<td>5.79, 9.0</td>
<td>7.27</td>
<td>7.61</td>
<td>165</td>
</tr>
<tr>
<td>12</td>
<td>-OCH(_3)</td>
<td>3</td>
<td>58</td>
<td>5.58, 9.3</td>
<td>7.69</td>
<td>8.01</td>
<td>168</td>
</tr>
<tr>
<td>13</td>
<td>-Cl</td>
<td>3</td>
<td>35</td>
<td>5.60,(^a)</td>
<td>7.67</td>
<td>7.93</td>
<td>167</td>
</tr>
<tr>
<td>14</td>
<td>-H</td>
<td>4</td>
<td>52</td>
<td>5.60-5.53,(^*)</td>
<td>7.50</td>
<td>8.01</td>
<td>167</td>
</tr>
</tbody>
</table>

\(^a\)Peaks merged with saccharide proton, \(^*\)merged with alkene proton
General procedure for the synthesis of O-propargylated derivative, 2-5

To the corresponding hydroxy benzaldehydes (1 mmol) in dry DMF, (5 mmol) anhydrous K$_2$CO$_3$ was added and stirred for 10 minutes. To the reaction mixture was added propargyl bromide (1.2 mmol) and stirred for 24 hours. After the completion of the reaction, work up was done using chloroform. The organic layer was evaporated and the product was purified using silica gel column chromatography.

Spectral data of 2-(prop-2-ynyloxy)-1-benzaldehyde (2):
Pale yellow solid; Mp: 64-66 °C; Yield: 0.12 g (75%); 1H NMR (300 MHz, CDCl$_3$): δ 10.49 (s, 1H, -CHO), 7.87 (d, J = 7.8 Hz, 1H, Ar-H), 7.61-7.55 (m, 1H, Ar-H), 7.14-7.07 (m, 2H, Ar-H), 4.9 (s, 2H, -OCH$_2$), 2.57 (t, J = 2.4 Hz, 1H, -C≡CH); 13C NMR (75 MHz, CDCl$_3$): δ 189.5, 159.8, 135.7, 128.6, 125.5, 121.7, 113.2, 77.7, 76.5, 56.4.

Spectral data of 2-methoxy-4-(prop-2-ynyloxy)-1-benzaldehyde (3):
Pale yellow solid; Mp: 86-88 °C; Yield: 0.16 g (84%); 1H NMR (300 MHz, CDCl$_3$): δ 9.88 (s, 1H, -CHO), 7.49-7.45 (m, 2H, Ar-H), 7.15 (d, J = 8.1 Hz, 1H, Ar-H), 4.87 (d, J = 2.4 Hz, 2H, -OCH$_2$), 3.95 (s, 3H, -OCH$_3$), 2.57 (t, J = 2.3 Hz, 1H, -C≡CH); 13C NMR (75 MHz, CDCl$_3$): δ 190.8, 152.2, 150.1, 131.0, 126.2, 112.7, 109.6, 77.0, 76.6, 56.6, 56.0.

Spectral data of 5-chloro-2-(prop-2-ynyloxy)-1-benzaldehyde (4):
Yellow solid; Mp: 60-62 °C; Yield: 0.14 g (74%); 1H NMR (300 MHz, CDCl$_3$): δ 10.41 (s, 1H, -CHO), 7.81 (s, 1H, Ar-H), 7.51 (d, J = 9.0 Hz, 1H, Ar-H), 7.09 (d, J = 9.0 Hz, 1H, Ar-H), 4.83 (d, J = 2.4 Hz, 2H, -OCH$_2$), 2.59 (t, J = 2.4 Hz, 1H, -C≡CH); 13C NMR (75 MHz, CDCl$_3$): δ 188.2, 158.1, 135.2, 128.1, 127.5, 126.5, 115.0, 77.2, 76.9, 56.8.

Spectral data of 3-(prop-2-ynyloxy)-1-benzaldehyde (5):
Yield 0.13 g, (81%); 1H NMR (300 MHz, CDCl$_3$): δ 9.97 (s, 1H, -CHO), 7.52-7.44 (m, 3H, Ar-H), 7.28-7.23 (m, 1H, Ar-H), 4.76 (d, J = 2.4 Hz, 2H, -OCH$_2$), 2.57 (t, J = 2.4 Hz, 1H, -C≡CH); 13C NMR (75 MHz, CDCl$_3$): δ 192.0, 158.1, 137.8, 130.2, 124.1, 122.1, 113.6, 77.9, 76.2, 56.0.

1H NMR, 13C NMR, DEPT-135, Mass spectrum are available in the ESI
Contents

Figure 1: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 2.
Figure 2: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 2.
Figure 3: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 3.
Figure 4: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 3.
Figure 5: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 4.
Figure 6: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 4.
Figure 7: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 5.
Figure 8: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 5.
Figure 9: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 6.
Figure 10: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 6.
Figure 11: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 7.
Figure 12: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 7.
Figure 13: DEPT-135 spectrum (75 MHz, CDCl$_3$) of compound 7.
Figure 14: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 8.
Figure 15: 1H NMR expansion spectrum (300 MHz, CDCl$_3$) of compound 8.
Figure 16: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 8.
Figure 17: 1H-13C COSY spectrum (CDCl$_3$) of compound 8.
Figure 18: 1H-13C COSY spectrum expansion (CDCl$_3$) of compound 8.
Figure 19: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 9.
Figure 20: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 9.
Figure 21: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 11.
Figure 22: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 11.
Figure 23: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 12.
Figure 24: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 12.
Figure 25 Mass spectrum of compound 12.
Figure 26: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 13.
Figure 27: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 13.
Figure 28: 1H NMR spectrum (300 MHz, CDCl$_3$) of compound 14.
Figure 29: 13C NMR spectrum (75 MHz, CDCl$_3$) of compound 14.
Figure 30: Hydrogen bonding interaction of compounds (a) 6, (b) 11,(c) ,7 (d) 12, (e) ,8 (f) 13.
Figure 1 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 2.
Figure 2 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 2
Figure 3 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 3.
Figure 4 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 3
Figure 5 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 4.
Figure 6 $\text{^{13}C}$ NMR spectrum (75 MHz, CDCl$_3$) of compound, 4.
Figure 7 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 5.
Figure 8 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 5.
Figure 9 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 6.
Figure 10 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 6
Figure 11 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 7.
Figure 12 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 7.
Figure 13 DEPT-135 spectrum (75 MHz, CDCl₃) of compound, 7.
Figure 14 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 8.
Figure 15 1H NMR expansion spectrum (300 MHz, CDCl$_3$) of compound, 8.
Figure 16 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 8

Figure 17 1H - 13C COSY spectrum (CDCl$_3$) of compound, 8
Figure 18: 1H - 13C COSY expansion spectrum (CDCl$_3$) of compound, 8.
Figure 19 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 9.
Figure 20 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 9.
Figure 21 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 11.
Figure 22 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 11.
Figure 23 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 12.
Figure 24 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 12.
Figure 25 Mass spectrum of compound, 12.

Calc. exact mass, 532.19
m/z found, 533.20 [M+H]^+
Figure 26 1H NMR spectrum (300 MHz, CDCl$_3$) of compound, 13.
Figure 27 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 13.
Figure 28 ¹H NMR spectrum (300 MHz, CDCl₃) of compound, 14.
Figure 29 13C NMR spectrum (75 MHz, CDCl$_3$) of compound, 14.
Docking Studies:

Figure 30 Hydrogen bonding interaction of compounds (a) 6, (b) 11, (c) 7, (d) 12, (e) 8, (f) 13.