Study of benzophenone grafting on reduced graphene oxide by unconventional techniques

Ignazio Roppoloa,*, Annalisa Chiapponea, Samuele Porroa, Micaela Castellinoa, Enzo Laurentib

aIstituto Italiano di Tecnologia, Center for Space Human Robotics, C.so Trento 21, 10129 Torino, Italy
bDipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125, Torino, Italy

Supporting Information

Figure S1 XPS survey spectra of pristine graphene oxide.

* Corresponding Author.
Tel.:+390110903421
Email address: ignazio.roppolo@iit.it
Figure S2 XPS survey spectra of pristine graphene oxide after 5 minutes of UV irradiation.

Figure S3 XPS survey spectra of pristine graphene oxide after 5 minutes of UV irradiation in the presence of benzophenone (1:1 wt/wt).
Figure S4 XPS survey spectra of pristine graphene oxide after 5 minutes of UV irradiation in the presence of benzophenone (1:3 wt/wt).

Figure S5 XPS survey spectra of pristine graphene oxide after 5 minutes of UV irradiation in the presence of benzophenone (1:5 wt/wt).
Figure S6 IR spectrum of Benzophenone at the degradation temperature

Figure S7 IR spectrum of DMF
Figure S8. ESR simulation of the different radical species measured. I, a single isotropic signal, observed also in absence of DMPO; II, the DMPO-DMF species; III, the DMPO-BP radical adduct; IV, a three-lines pattern of a nitroxide-like radical, probably due to a degradation of DMPO as a results of irradiation. For a better comprehension, the relative abundance of each species was not taken in account into the representation.
Figure S9. ESR spectra of DMPO-BP in water. The experimental spectrum was obtained from the GO/UV spectrum shown in Figure 5 by subtraction of the simulated spectra of the species I, II and IV.