Supporting Information
Selective Chemosensing of Spermidine based on Fluorescent Organic Nanoparticles in Aqueous Media via Fe$^{3+}$ Displacement Assay

Shweta Chopraa†, Jasminder Singhb†, Harpreet Kaura, Harpreet Singhc, Narinder Singhb*, Navneet Kaura*

aCentre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh, India, 160014. Tel: 91-1722534464; E-mail: navneetkaur@pu.ac.in

bDepartment of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Panjab, India, 140001, Tel: 91- 1881242176, E-mail: nsingh@iitrpr.ac.in

cSMMEE, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Panjab, India, 140001

† Both authors contributed equally.

List of Figures

Figure S1. 1H NMR spectrum of compound 1.

Figure S2. 13C NMR spectrum of compound 1.

Figure S3. Mass Spectra of Compound 1.

Figure S4. A competitive binding assay with FONs of 1 (10 µM) for Fe$^{3+}$ (100 µM) in the presence of other metal ions in aqueous medium.

Figure S5. Fluorescence spectrum of nano-aggregates of 1 at different pH values.

Figure S6. Fluorescence spectrum of complex of nano-aggregates of 1 and Fe$^{3+}$ at different pH values.

Figure S7. Change in fluorescence spectrum of nano-aggregates of 1 upon addition of 0-100 eq.
of TBA perchlorate.

Figure S8. Change in fluorescence spectrum complex of nano-aggregates of 1 and Fe$^{3+}$ upon addition of 0-100 eq. of TBA perchlorate.

Inset figure 3: A plot of fluorescence intensity depending on the concentration of Fe$^{3+}$ ranging from 0-140 µM.

Inset figure 4B: A plot of fluorescence intensity depending on the concentration of Fe$^{3+}$ ranging from 0-125 µM.
Figure S1. 1H NMR spectrum of compound 1.
Figure S2. 13C NMR spectrum of compound 1.
Figure S3. Mass Spectra of Compound 1.
Figure S4. A competitive binding assay with FONs of 1 (10 µM) for Fe³⁺ (100 µM) in the presence of other metal ions in aqueous medium.
Figure S5. Fluorescence spectrum of nano-aggregates of 1 at different pH values.

Figure S6. Fluorescence spectrum of complex of nano-aggregates of 1 and Fe$^{3+}$ at different pH values.
Figure S7. Change in fluorescence spectrum of nano-aggregates of 1 upon addition of 0-100 equiv. of TBA perchlorate.

Figure S8. Change in fluorescence spectrum complex of nano-aggregates of 1 and Fe$^{3+}$ upon addition of 0-100 equiv. of TBA perchlorate.
Inset figure 3: A plot of fluorescence intensity depending on the concentration of Fe$^{3+}$ ranging from 0-140 µM.

Inset figure 4B: A plot of fluorescence intensity depending on the concentration of Fe$^{3+}$ ranging from 0-125 µM.
Figure S9: Mass Spectrum of F1 Fe$^{3+}$
Figure S10: Mass Spectrum of F1.Fe$^{3+}$ after addition of spermidine

Figure S11: Lehrer Chipman plot for calculation of binding constant and stoichiometry of F1.Fe$^{3+}$ complex
Figure S12: Lehrer Chipman plot for calculation of binding constant and stoichiometry of Spermidine.Fe$^{3+}$ complex

Table S1: Comparison of reported sensors for spermidine in literature with the proposed sensor.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Reference</th>
<th>Detection limit</th>
<th>Technique used</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Journal of Pharmaceutical and Biomedical Analysis, 49, 2009, 587–593</td>
<td>0.72 μM</td>
<td>Cyclic Voltammetry</td>
<td>No</td>
</tr>
<tr>
<td>3.</td>
<td>Food Chemistry, 1999, 65, 117–121</td>
<td>0.5 μM</td>
<td>TLC</td>
<td>No</td>
</tr>
<tr>
<td>6.</td>
<td>Food and Nutrition Sciences, 2014, 5, 138-146</td>
<td>-</td>
<td>Fluorimetric</td>
<td>No</td>
</tr>
<tr>
<td>7.</td>
<td>Collect. Czech. Chem. Commun. 1983, 48, 672-678</td>
<td>0.02 mM</td>
<td>Amperometric (1-2 Min)</td>
<td>No</td>
</tr>
<tr>
<td>8.</td>
<td>Journal of Chromatography B Volumes 978–979, 26 January 2015, Pages 131–137</td>
<td>0.03 μM</td>
<td>Flow Injection Analysis</td>
<td>No</td>
</tr>
<tr>
<td>9.</td>
<td>Presented Work</td>
<td>3.68 μM</td>
<td>Fluorimetric</td>
<td>Yes</td>
</tr>
</tbody>
</table>