Synthesis of covalently attached hexadecaanilines on carbon nanotubes—toward electronic nanocarbon preparation

a Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA, E-mail: Long_Chiang@uml.edu

b Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada

c U. S. Army RDECOM, Natick Soldier Center, Natick, MA 01760, USA

Figure S1. Chromatographic diagram (HPLC) of oligoaniline (OAni) fractions obtained from a sequence of separation procedures. (a) crude reaction products showing a number of oligoanilines, (b)–(e) intermediate fractions of oligoanilines showing progressive reduction of low molecular weighted OAni, and (f) single chromatographic band of hexadecaaniline (A16).
Figure S2. 1H NMR spectra (DMSO-d_6) of (a) hexadecaaniline–eicosaaniline ($A_{16/20}$) and DMF-soluble MWNT-($A_{16/20}$)$_x$ isolated from the reaction carried out at temperatures of (b) -10 °C, (c) 25–45 °C, and (d) 60 °C for 3 h.