## **Electronic Supplementary Information (ESI)**

## Large Payloads of Gold Nanoparticles into the Polyamine Network Core of Stimuli-Responsive PEGylated Nanogels for Selective and Noninvasive Cancer Photothermal Therapy

Takahito Nakamura<sup>a</sup>, Atsushi Tamura<sup>a</sup>, Hiroki Murotani<sup>a</sup>, Motoi Oishi<sup>a,b,c</sup>, Yuta Jinji<sup>a</sup>, Kiyoto Matsuishi<sup>a</sup>, and Yukio Nagasaki<sup>\*,a,b,c,d,e</sup>

10

<sup>a</sup>Graduate School of Pure and Applied Sciences, <sup>b</sup>Tsukuba Research Center for Interdisciplinary Materials Science (TIMS),<sup>c</sup>Center for Tsukuba Advanced Research Alliance (TARA), and <sup>d</sup>Master's School of Medical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 Japan, and <sup>e</sup>International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS) and University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 Japan.

<sup>\*</sup> To whom correspondence should be addressed: Prof. Yukio Nagasaki (Phone: +81-29-853-5749.Fax: +81-29-853-5749. E-mail: yukio@nagalabo.jp)

Supplementary Material (ESI) for *Nanoscale* This journal is © the Royal Society of Chemistry 2010



*Figure S1.* Degree of protonation ( $\alpha$ ) as a function of pH ( $\alpha$ /pH curve) for PEGylated nanogel at 5 (blue), 25 (green) and 60 °C (red).



*Figure S2.* TEM images of PEGylated GNG (2) and PEGylated GNG (8) prepared at 5°C, 25°C and 60°C.

Supplementary Material (ESI) for *Nanoscale* This journal is © the Royal Society of Chemistry 2010



*Figure S3.* Increments of the temperature ( $\Delta$ T) of the PEGylated GNGs (1, 2, 4 and 8) solutions and the PEGylated nanogel solution after irradiation with a 600 mW Ar<sup>+</sup> laser (514.5 nm) at a fluence of 39 W/cm<sup>2</sup> for 4 min (9.4 kJ/cm<sup>2</sup>) ([Au]= 48 µg/mL).



*Figure S4.* Fluorescence microscope images of HeLa cells after irradiation with the  $Ar^+$  laser (514.5 nm) for 5 min at a fluence of 13, 26, and 52 W/cm<sup>2</sup> for 5 min ( 3.9, 7.8 and 15.6 kJ/cm<sup>2</sup>, respectively).

Supplementary Material (ESI) for *Nanoscale* This journal is © the Royal Society of Chemistry 2010



*Figure S5.* Viability of the HeLa cells treated with PEGylated GNG (1) (closed circle) and PEGylated GNG (2) (open circle) at various Au concentrations with (red) or without (green) irradiation using  $Ar^+$  laser (514.5 nm) at a fluence of 26 W/cm<sup>2</sup> for 5 min (7.8 kJ/cm<sup>2</sup>).

5



*Figure S6.* Absorbance at the SPB (535 nm) of PEGylated GNG (1) (red) and PEGylated GNG (2) (blue) in the HeLa cells as a function of the PEGylated nanogel concentration.