Supporting Information

Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium

Weihua Di1,2,*, Jie Li3, Naoto Shirahata2,4, Yoshio Sakka1,2,*, Marc-Georg Willinger5 and Nicola Pinna5,6

1. World Premier International Research (WPI) Center Initiative on Materials Nanoarchitronics (MANA), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
2. Fine Particle Processing Group, Nano Ceramics Center, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
3. Nanotechnology Innovation Center, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
4. PRESTO, Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
5. Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
6. World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-744, Korea
Figure S1. XRD pattern of the sample synthesized by citric acid-mediated hydrothermal route.

Figure S2. Room temperature excitation spectra of the (a) pure TbPO$_4$ monitored at 543 nm and of the Eu$^{3+}$-doped TbPO$_4$ (0.3 mol%) monitored at (b) 543 nm and (c) 611 nm. The inset shows a magnification of the $^7F_0 \rightarrow ^5L_6$ transition for the Eu$^{3+}$-doped TbPO$_4$ (0.3 mol%) monitored at 611 nm.
Figure S3. The luminescence intensity of cells incubated with TbPO₄:Eu nanoparticles at 37 °C and 4 °C, respectively.