Supporting Information For

Surface Engineering on Mesoporous Silica Chips for Enriching Low Molecular Weight Phosphorylated Proteins

Ye Hu¹, Yang Peng¹, Kevin Lin², Haifa Shen¹, Louis Brousseau III¹, Jason Sakamoto¹, Tong Sun¹, Mauro Ferrari¹,²,³,⁴

1. Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston
2. Department of Biomedical Engineering, the University of Texas at Austin
3. The University of Texas M.D. Anderson Cancer Center
4. Department of Bioengineering, Rice University

Figure S.1. Schematic representation of 2-step postsynthetic functionalization of mesoporous silica thin films with metal ion (Zr⁴⁺ or Ti⁴⁺).

M = Ti or Zr
Figure S.2. MALDI TOF spectra of fractionated peptides processed by Ti$^{4+}$ immobilized chip from (a) raw α-casein, (b) trypsinized α-casein, (c) trypsinized α-casein treated with phosphatase, and (d) raw α-casein treated with phosphatase.
Figure S.3. MALDI TOF spectra of fractionated peptides processed by Ga$^{3+}$ immobilized chip from (a) raw α-casein, (b) trypsinized α-casein, (c) trypsinized α-casein treated with phosphatase, and (d) raw α-casein treated with phosphatase.