Atomically of MoS$_2$ thin layers via a two step thermal evaporation - exfoliation method

Sivacareendran Balendhran**, Jian Zhen Ou¹, Madhu Bhaskaran*, Sharath Sriram¹, Samuel Ippolito³, Zoran Vasic³, Eugene Kats⁴, Suresh Bhargava⁵, Serge Zhuiykov⁴ and Kourosh Kalantar-zadeh**

Electronic Supplementary Information

¹School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia; E-mail: shiva.balendhran@rmit.edu.au and kourosh.kalantar@rmit.edu.au
²School of Applied Sciences, RMIT University, Melbourne, VIC, Australia
³Melbourne Centre for Nano Fabrication, Clayton, VIC, Australia
⁴Materials Science and Engineering Division, CSIRO, Highett, VIC, Australia

ESI.1 AFM Images

Fig. S1 A flake made of 8 layers. A one layer step on the top of the 8th layer can be resolved.
ESI.2 Proposed Reaction Mechanisms

At the lower temperatures of 775 °C, MoO$_3$ has been reduced to MoO$_2$ as the evaporated sulphur interacts with oxygen atoms of MoO$_3$ to produce SO$_2$, which is extracted as a gaseous by-product. At the higher temperature of 830 °C a mixture of MoS$_2$ and MoO$_3$ is obtained as the sulphur replaces the oxygen in MoO$_2$. This leads to the decrease in the percentage of gaseous sulphur which makes the annealing atmosphere less of a reduction environment. The replaced oxygen ions at higher temperatures along with the lack of sulphur allow a fraction of MoO$_2$ to re-oxidize back to MoO$_3$. Similar interactions have been reported by Ressler et al.30 in a study of the formation of sub Mo oxides from MoO$_3$ in a reducing (H$_2$) environment. The proposed reaction mechanisms at 830 °C provide an overview of the composition of the end-product in relation to the initial ratio of reactents.

Proposed reaction mechanism at 775 °C:

$$2\text{MoO}_3 + S \rightarrow 2\text{MoO}_2 + \text{SO}_2$$

Proposed reaction mechanism at 830 °C:

$$\text{MoO}_2 + 3S \rightarrow \text{MoS}_2 + \text{SO}_2$$

$$3\text{MoO}_2 + 2S \rightarrow \text{MoS}_2 + 2\text{MoO}_3$$