Encapsulation of TiO$_2$(B) Nanowire Cores into SnO$_2$/Carbon Nanoparticle Shells and Their High Performance in Lithium Storage

Zunxian Yang, 1* Guodong Du, 2 Zaiping Guo, 2,3* Xuebin Yu, 4* Zhixin Chen, 3 Taoliang Guo, 1 Rong Zeng 2

1 Engineering Research Center for Field Emission Display Technology of the Ministry of Education, Fuzhou University, Fuzhou 350002, P. R. China
2 Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522, Australia
3 School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2522, Australia
4 Department of Materials Science, Fudan University, Shanghai 200433, P. R. China

Supporting Information

Captions

Fig. S1 the TGA results on (a) TSC1, (b) TSC2.

Fig. S2 X-ray diffraction patterns of as-prepared H$_2$Ti$_3$O$_7$ nanowires and TS1 sample.

Fig. S3 Low and high magnification FE-SEM images of the hybrid nanowires: (a)

* Corresponding author should be addressed. Tel.: +61 2 4221 5225; Fax: +61 2 4221 5731

E-mail: zguo@uow.edu.au (Z. Guo)
yangzunxian@hotmail.com (Z. Yang)
yuxuebin@fudan.edu.cn (X. Yu)
low magnification FE-SEM image of **TSC1** and higher magnification (inset); **(b)** low magnification FE-SEM image of **TS1** and higher magnification (inset); **(c)** low magnification FE-SEM image of **TSC2** and higher magnification (inset); **(d)** low magnification FE-SEM image of **TS2** and higher magnification (inset). (The hybrid nanowires of **TSC1** and **TSC2** are much smoother than those of **TS1** and **TS2** because of the many SnO$_2$ nanocrystals growing on the surface of the **TS1** and **TS2** nanowires.)

Fig. S4 (a) TEM image of single **TSC2** nanowire, indicating that SnO$_2$ nanocrystals are encapsulated in carbonaceous material surrounding the TiO$_2$(B) nanowire. **(b)** High-magnification TEM image of **TS2** nanowire, indicating that SnO$_2$ nanocrystals surround the TiO$_2$(B) nanowire.

Fig. S5 Energy dispersive X-ray (EDX) spectra and corresponding content tables for the samples (insets): **(a)** TSC1; **(b)** TS1; **(c)** TSC2; **(d)** TS2. (The signals of Carbon result from the tape used for SEM observations, while those of Aluminum may be due to the Al stage used during SEM.)

Scheme S1 Charge diffusion and conducting mechanism of composite nanowires during charge/discharge processes: **(a)** TSC1 and TSC2; **(b)** TS1 and TS2.

Fig. S6 (a) Cyclic voltammograms of **TS1** electrode from the first cycle to the fifth cycle at a scan rate of 0.1 mV s$^{-1}$ in the voltage range of 0.01–3.0 V. **(b)** Capacity–cycle number curves from the first cycle to the 66th cycle of composite electrodes cycled between 1.0 and 3.0 V vs. Li$^+/\text{Li}$ at the current density of 60 mA g$^{-1}$.
Fig. S1
Fig. S2
Fig. S3
Fig. S4
Fig. S5
Scheme S1
Fig. S6