Supporting information for

Reduced Graphene Oxide Supported Highly Porous V\textsubscript{2}O\textsubscript{5} Spheres as a High-Power Cathode Material for Lithium Ion Batteries

Xianhong Rui,ab Jixin Zhu,a Daohao Sim,a Chen Xu,a Yi Zeng,a Huey Hoon Hng,a Tuti Mariana Lim,abc and Qingyu Yanade

aSchool of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
bSchool of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
cSchool of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 599489, Singapore
dEnergy Research Institute, Nanyang Technological University, 637459, Singapore
eTUM CREATE Centre for Electromobility, Nanyang Technological University, 637459, Singapore

* Corresponding author. Tel: +65 6790 4583, Fax: +65 6790 9081
E-mail addresses: Alexyan@ntu.edu.sg (Qingyu Yan), tmlim@ntu.edu.sg (Tuti Mariana Lim)
Figure S1. XRD pattern of the rVO sample prepared without GO in the solvothermal process. A broad hump at 2θ of about 30° is attributed to the signal from the sample holder.
Figure S2. FESEM image of the rVO sample prepared in the absent of GO.
Figure S3. Cycling performance of the mixture of GO (46 wt%) and ~100 nm V$_2$O$_5$ spheres at a current density of 90 mA g$^{-1}$.