Electronic Supplementary Information (ESI)

Synthesis and photovoltaic property of fine and uniform Zn$_2$SnO$_4$ nanoparticles

Dong Wook Kim,ab Seong Sik Shin,b In Sun Cho,c* Sangwook Lee,ab Dong Hoe Kim,b Chan Woo Lee,b Hyun Suk Jungd and Kug Sun Hong*ab

aResearch Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea, bDepartment of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea, cDepartment of Mechanical Engineering, Stanford University, Stanford, California 94305, USA, dSchool of Advanced Materials Science and Engineering, Sung Kyun Kwan University, Suwon 440-746, Korea

Fig. S1 Low magnified TEM image of Zn$_2$SnO$_4$ nanoparticles (NPs) that was synthesized by a hydrothermal reaction with ammonium carbonate (AC) addition as much as the AC/Zn mole ratio of 0.5 at 180 °C for 12 h.
Fig. S2 Optical absorption spectrum of Zn$_2$SnO$_4$ NPs; inset, corresponding band gap determination.
Fig. S3 XRD pattern and SEM image Zn$_2$SnO$_4$ powder synthesized by a hydrothermal reaction without AC addition at 200 °C for 12 h.
Fig. S4 XRD patterns of the powders prepared by reaction time-controlled experiments. All the diffraction peaks of powder obtained at a reaction time of 12 h are indexed to a cubic Zn$_2$SnO$_4$ (JCPDS No. 24-1470).
Fig. S5 J-V characteristics of the DSSCs employing Zn$_2$SnO$_4$ NP films as a function of film thickness.
Fig. S6 Comparative studies of photovoltaic properties with DSSCs employing the ultra-fine Zn$_2$SnO$_4$ NPs and the commercial TiO$_2$ NPs (P25). (a) Photocurrent density-voltage ($J-V$) characteristics of DSSCs, (b) optical absorption spectra of the desorbed dye molecules from the Zn$_2$SnO$_4$ and TiO$_2$ photoelectrodes, and (c) Electron diffusion coefficients (D_n) and (d) lifetimes (τ_n) as a function of short circuit current (J_{SC}) that is obtained by the stepped light-induced transient measurements of photocurrent and photovoltage (SLIM-PCV)1.

56