Electronic Supplementary Information (ESI)

Synthesis and photovoltaic property of fine and uniform Zn₂SnO₄ nanoparticles

Dong Wook Kim,^{*ab*} Seong Sik Shin,^{*b*} In Sun Cho,*^{*c*} Sangwook Lee,^{*ab*} Dong Hoe Kim,^{*b*} Chan

Woo Lee,^b Hyun Suk Jung^d and Kug Sun Hong^{*ab}

^aResearch Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744,

Korea, ^bDepartment of Materials Science and Engineering, Seoul National University, Seoul

151-744, Korea, ^cDepartment of Mechanical Engineering, Stanford University, Stanford,

California 94305, USA, ^dSchool of Advanced Materials Science and Engineering, Sung Kyun

Kwan University, Suwon 440-746, Korea

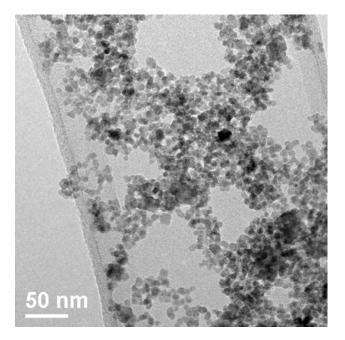


Fig. S1 Low magnified TEM image of Zn_2SnO_4 nanoparticles (NPs) that was synthesized by a hydrothermal reaction with ammonium carbonate (AC) addition as much as the AC/Zn mole ratio of 0.5 at 180 °C for 12 h.

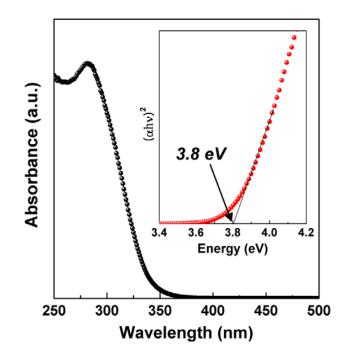


Fig. S2 Optical absorption spectrum of Zn_2SnO_4 NPs; inset, corresponding band gap

determination.

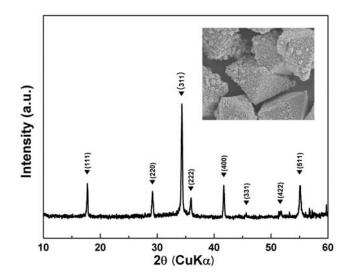


Fig. S3 XRD pattern and SEM image Zn_2SnO_4 powder synthesized by a hydrothermal reaction

without AC addition at 200 $^{\rm o}C$ for 12 h.

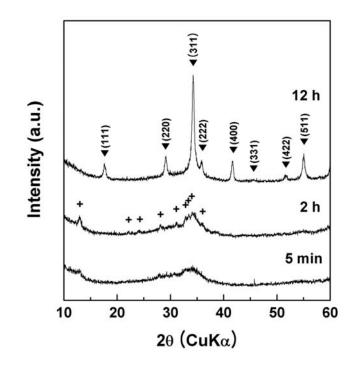


Fig. S4 XRD patterns of the powders prepared by reaction time-controlled experiments. All the diffraction peaks of powder obtained at a reaction time of 12 h are indexed to a cubic Zn_2SnO_4 (JCPDS No. 24-1470).

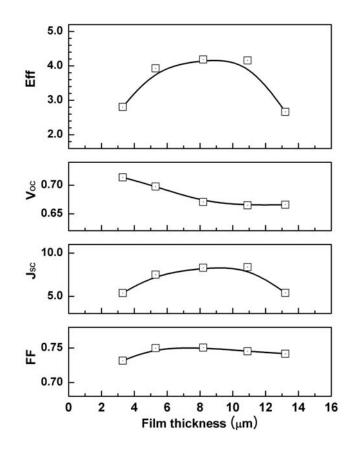
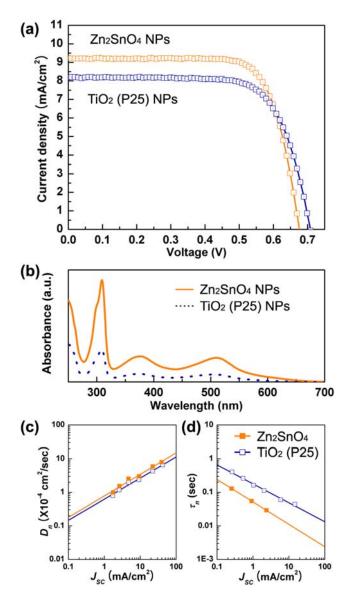



Fig. S5 J-V characteristics of the DSSCs employing Zn_2SnO_4 NP films as a function of film

thickness.

Fig. S6 Comparative studies of photovoltaic properties with DSSCs employing the ultra-fine Zn_2SnO_4 NPs and the commercial TiO₂ NPs (P25). (a) Photocurrent density-voltage (*J-V*) characteristics of DSSCs, (b) optical absorption spectra of the desorbed dye molecules from the Zn_2SnO_4 and TiO₂ photoelectrodes, and (c) Electron diffusion coefficients (D_n) and (d) lifetimes (τ_n) as a function of short circuit current (J_{SC}) that is obtained by the stepped light-induced transient measurements of photocurrent and photovoltage (SLIM-PCV)¹.

1 S. Nakade, T. Kanzaki and Y. Wada, S. Yanagida, *Langmuir*, 2005, **21**, 10803.