Supporting Information

Free-Standing Nickel Oxide Nanoflake Arrays: Synthesis and Application for Highly Sensitive Non-enzymatic Glucose Sensors

Gongming Wang,a Xihong Lu,a,b Teng Zhai, b Yichuan Ling, a Hanyu Wang, a Yexiang Tong, b and Yat Li *a

a Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 United States

b KLGHEI of Environment and Energy Chemistry, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

*Corresponding Author. E-mail: yli@chemistry.ucsc.edu
Figure S1. Cyclic voltammetric curves collected for (a) as-prepared Ni(OH)$_2$, and Ni(OH)$_2$ annealed in air at (b) 200 °C, (c) 300 °C, (d) 400 °C, (e) 500 °C and (f) 600 °C, in 0.1 M NaOH aqueous solution at a scan rate of 20 mV/s.
Figure S2. Linear sweep voltammograms of (a) as-prepared Ni(OH)$_2$ nanoflakes and Ni(OH)$_2$ nanoflakes annealed in air at (b) 200 °C, (c) 300 °C, (d) 400 °C and (e) 600 °C collected in a 0.1 M NaOH solution with a glucose concentrations from 0.1 mM to 2.0 mM at a scan rate of 20 mV/s.
Figure S3. Thermogravimetric (TGA) curve of Ni(OH)$_2$ nanoflake arrays (in powder form) collected from FTO substrate.

Figure S4. Ampermetric response to the addition of 1 mM glucose into a 0.1M NaOH aqueous solution at 0.5 V vs. Ag/AgCl, collected for four different samples: 1) NiO nanoflake arrays; 2) NiO nanoflake arrays spin coated with a layer of PVDF polymer; 3) PVDF layer on FTO glass; and 4) NiO powder mixed with PVDF and pasted onto FTO glass.