Supporting Information

Synthesis and Characterization of Luminescent Cadmium Selenide/Zinc Selenide/Zinc Sulfide Cholinomimetic Quantum Dots

by

Claire Gégout, Maria L. McAtee, Nichole M. Bennett, L. M. Viranga Tillekeratne and Jon R. Kirchhoff

a Department of Chemistry, College of Natural Sciences and Mathematics
b Department Medicinal and Biological Chemistry, College of Pharmacy
c School of Green Chemistry and Engineering

University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606

Corresponding Author email: jon.kirchhoff@utoledo.edu
Supplementary Materials: NMR Spectra

Figure S1. 1H-NMR of the non water-soluble QDs (400 MHz, in CDCl$_3$)

Figure S2. 31P-NMR of the non water-soluble QDs (400 MHz, in CDCl$_3$)
Figure S3. 31P-NMR of TOPO (400 MHz, in CDCl$_3$)

Figure S4. 31P-NMR of Fresh TOP (400 MHz, in CDCl$_3$)
Figure S5: 31P-NMR of TOP after two days of exposure to air (400 MHz, in CDCl$_3$)

Figure S6. 1H-NMR of the water-soluble QDs (400 MHz, in D$_2$O)
Figure S7. 1H-NMR of the water-soluble QDs (400 MHz, in D$_2$O)

Figure S8. 31P-NMR of the water-soluble QDs (400 MHz, in D$_2$O)
Figure S9. 1H-NMR of MSA (400 MHz, in D$_2$O)

Figure S10. 1H-NMR of the water-soluble QDs bound with the HC-15 analogue (600 MHz, in D$_2$O). For this spectrum, the peak for water was burned.