Supporting Information

Hierarchical Self-assembly of Hexagonal Single-Crystal Nanosheets into 3D Layered Superlattices with High Conductivity

Yulun Tao,* Yuhua Shen, Liangbao Yang, Bin Han, Fangzhi Huang, Shikuo Li, Zhuwang Chu, and Anjian Xie*

*SCHOOL OF CHEMISTRY AND CHEMICAL ENGINEERING, †SCHOOL OF PHYSICS AND MATERIALS SCIENCE, ANHUI UNIVERSITY, ‡INSTITUTE OF INTELLIGENT MACHINES, CHINESE ACADEMY OF SCIENCE, HEFEI 230039, P. R. CHINA.

E-mail: s_yuhua@163.com and anjx@163.com.

Figures

Fig. S1. HRTEM image of the 13-day aged nanorods prepared in cyclohexane.

Fig. S2. TEM image with SAED pattern of 3-month aged hexagonal nanosheets.
Fig. S3. HRTEM image of 3-month aged hexagonal nanosheets.

Fig. S4. XRD pattern of 3-month aged hexagonal nanosheets.

Fig. S5. (a,b) Microscope photograph and SEM image of 5-month aged layered crystals with superlattice structure in cyclohexane. (c,d) SEM images of 5-month aged layered crystals with superlattice structure in hexane and octane.
Fig. S6. EDS spectrum of 5-month aged layered crystals with superlattice structure in cyclohexane.

Fig. S7. SEM images of PANI after nanofibers are aged in (a) hexane; (b) octane; (c) benzene; (d) ethanol for 13 days, respectively.

Fig. S8. TEM with HRTEM images of the 13-day aged nanorods prepared in (a) hexane and (b) octane, respectively.
Fig. S9. (a-e) STM images and corresponding height profile of the 5-month aged PANI crystals with superlattice structure in (a) clyclohexane; (b) hexane; (c) octane; (d) benzene; (e) ethanol, respectively.