Supplementary Information

Tailored Li$_4$Ti$_5$O$_{12}$ Nanofibers with Outstanding Kinetics for Lithium Rechargeable Batteries

Mi Ru Jo,a Yeon-Sik Jung a,b and Yong mook Kang a,*

a Department of Chemistry, Dongguk University-Seoul, 100715 Seoul, Republic of Korea.

b Department of Materials Science & Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Dachak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.

* Corresponding authors: dake1234@dongguk.edu (Y.-M.K), vsjung@kaist.ac.kr (Y.S. Jung)

Table of contents entry
Fig. S1. XRD patterns of (a) Li$_4$Ti$_5$O$_{12}$ nanoparticles, polymer/inorganic composites nanofibers calcined at (b) 700°C and (c) 800°C.
Fig. S2. SEM image of electrospun Li$_4$Ti$_5$O$_{12}$ nanofibers after calcination at (a) 700 °C and (b) 800°C

Fig. S3. The electrochemical performance of Li$_4$Ti$_5$O$_{12}$ nanofibers and Li$_4$Ti$_5$O$_{12}$ nanoparticles; (a) the initial galvanostate charge/discharge curves at 0.1C. (b) Cycle performance at 0.1C
Fig. S4. SEM image of as-prepared Li$_4$Ti$_5$O$_{12}$ nanoparticles by solid-state reaction.
Fig. S5. Nyquist plots of electrospun Li$_4$Ti$_5$O$_{12}$ nanofibers and Li$_4$Ti$_5$O$_{12}$ nanoparticles.
Fig. S6. SEM images of (a) as-prepared Li$_4$Ti$_5$O$_{12}$ nanofibers electrode and (b) Li$_4$Ti$_5$O$_{12}$ nanofibers electrode after 50 cycles.
Table S1. BET surface area and pore concentration of Li$_4$Ti$_5$O$_{12}$ nanoparticles and nanofibers.