Supporting Information

Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting**

Yan-Gu Lin**, Yu-Kuei Hsu*, Ying-Chu Chen*, Li-Chyong Chen**, San-Yuan Chen*,
Kuei-Hsien Chen**

[*] a Dr. Yan-Gu Lin and Dr. Kuei-Hsien Chen
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
E-mail: chenkh@pub.iams.sinica.edu.tw

b Prof. Yu-Kuei Hsu
Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien, 97401, Taiwan.

c Dr. Li-Chyong Chen, Dr. Kuei-Hsien Chen, and Ying-Chu Chen
Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
E-mail: chenlc@ntu.edu.tw

d Prof. San-Yuan Chen
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

e Dr. Yan-Gu Lin
Chemical Sciences and Engineering Division, Argonne National Laboratory, IL 60439, USA
E-mail: yglin@anl.gov

[**] This work was supported by the National Natural Science Council, Ministry of Education, Taiwan, and AOARD under AFSOR, US.
Fig. SI 1 Procedure for the preparation of C-doped ZnO hierarchically porous nanoarchitectures using polystyrene colloidal crystal templates.
Fig. SI 2 The photo image of pure ZnO and C-doped ZnO samples on ITO substrate.
Fig. SI 3 The low magnification images of (a) PS opals, pure ZnO porous structures (b) before and (c) after heating treatment.
Fig. SI 4 The low magnification images of C-doped ZnO porous structures.
Fig. SI 5 Corresponding energy-filtered TEM (a) zinc and (b) oxygen mapping images of C-doped ZnO hierarchically porous nanoarchitectures.
Fig. SI 6 XPS spectrum of C 1s core-level regions for C-doped ZnO hierarchically porous nanoarchitectures after re-annealing treatment at 600°C (10 hr). If the carbon is not introduced into lattice (Zn or O site), such carbon species will be completely decomposed by the thermal oxidation of ZnO itself. In our case, a main peak and a shoulder peak in XPS spectrum of C 1s core-level regions could be clearly observed. The main peak arises from adventitious elemental carbon or graphite-like bonding, while the shoulder peak corresponds to C-O bonding species. This result indicates that the carbon is indeed introduced and existed at lattice rather than dangling carbon or other amorphous carbon species.
Fig. SI 7 The (a) UV-vis spectra, (b) IPCE spectra, (c) photoconversion efficiency, and (d) stability data for conventional ZnO structures and pure ZnO hierarchically porous structures.