Supporting information

In-situ loading of ultra-small Cu$_2$O particles on TiO$_2$ nanosheets to enhance the visible-light photoactivity

Lichen Liu,a,b Xianrui Gua,b Chuanzhi Sun,c Hao Li,a,c Yu Deng,b,* Fei Gao,b,* Lin Donga,b,*

a Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China

b Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China

c Department of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China

* To whom correspondence should be addressed.

Tel.: +86 25 83592290; fax: +86 25 83317761.
E-mail address: dengyu@nju.edu.cn (Yu Deng)
E-mail address: gaofei@nju.edu.cn (Fei Gao)
E-mail address: donglin@nju.edu.cn (Lin Dong)
Fig. S1 Raman spectra of pure TiO$_2$ nanosheets (TiO$_2$-NS) and Cu$_2$O/TiO$_2$ nanosheets (CT nanosheets).
Fig. S2 Structural and morphological characterizations of N-doped TiO$_2$ nanosheets with \{001\} facets exposed. (a) XRD pattern, (b) UV-vis diffuse reflectance spectra, (c-d) TEM images.

The XRD pattern of N-doped TiO$_2$ nanosheets (N-TiO$_2$-NS) shows typical diffraction pattern of anatase (Fig. S2a), indicating they have the same crystal structure with TiO$_2$-NS and CT-NS. The UV-vis spectrum of N-TiO$_2$-NS is displayed in Fig. S2b. Obviously, the N-doped sample shows a enhanced absorption in 400~500 nm compared to pure TiO$_2$ nanosheets, which can be ascribed to the N-doping.

We use TEM to investigate the morphology of N-TiO$_2$-NS. In Fig. S2c, these N-doped TiO$_2$ nanosheets are rectangular nanosheets with side length of ca. 20~50 nm and thickness of ca. 4~10 nm. The HRTEM image Fig. S2d shows that the lattice spacing parallel to the top and bottom facets is ~0.235nm, corresponding to the \{001\} planes of anatase TiO$_2$. The morphology of N-TiO$_2$-NS is quite similar to that of TiO$_2$-NS and CT-NS, indicating that N-TiO$_2$-NS is a suitable visible-light catalyst for comparison to confirm the improvement in visible-light activity introduced by loading Cu$_2$O nanoparticles.