Supporting Information

Unzipping the Role of Chirality in Nanoscale Self-Assembly of Tripeptide Hydrogels

Silvia Marchesan, a,* Lynne Waddington, a Christopher D. Easton, a David A. Winkler, a, b Liz Goodall, a John Forsythe, c and Patrick G. Hartley a

a. CSIRO Materials Science and Engineering, Bayview Avenue, Clayton VIC 3168, Australia.
b. Monash Institute of Pharmaceutical Sciences, 384 Royal Pde. Parkville 3052, Australia.
c. Monash University, Department of Materials Engineering, PO Box 69M, VIC 3800, Australia.

*Silvia.Marchesan@csiro.au

Supporting Information Table of Contents

I. Analytical Characterization of Peptides
 a. LFF
 b. D LFF

II. TEM images of D LFF globular structures with and without short fibers

III. Cryo-TEM image of LFF globules

IV. Confocal Thioflavin T fluorescence image for aged globules of LFF

V. Confocal image for Thioflavin T-stained samples of LFF showing crystal needles aligning into plates.

VI. TEM images with negative staining of LFF

VII. Cryo-TEM image detail showing globules for LFF superimposed on a crystal plate

VIII. d spacings from XRD diffraction analysis

IX. Theoretical molecular distances from molecular modelling

S1
I – Analytical Characterization of Peptides

a. L-Leu-L-Phe-L-Phe

\[
\begin{align*}
\text{H-NMR} & \quad (400 \text{ MHz, DMSO, TMS}): \delta 8.65 (d, J = 8 \text{ Hz}, 1\text{H, NH}), 8.42 (d, J = 8 \text{ Hz}, 1\text{H, NH}), 8.03 (s (br), 3\text{H, NH})^3, \\
& \quad 7.23-7.14 (m, 10\text{H, Ar}), 4.55 (ddd, J = 4 \text{ Hz}, 8 \text{ Hz}, 8 \text{ Hz}, 1\text{H, } \alpha \text{CH}), 4.42 (ddd, J = 4 \text{ Hz}, 8 \text{ Hz}, 8 \text{ Hz}, 1\text{H, } \alpha \text{CH}), \quad 3.69 (m, 1\text{H, } \alpha \text{CH}), 3.04 (dd, J = 8 \text{ Hz, J}^\text{gem} = -14 \text{ Hz, 1H, } \beta \text{CH}_2), 2.95 (dd, J = 8 \text{ Hz, J}^\text{gem} = -14 \text{ Hz, 1H, } \beta \text{CH}_2), 2.88 (dd, J = 10 \text{ Hz, J}^\text{gem} = -14 \text{ Hz, 1H, } \beta \text{CH}_2), 2.76 (dd, J = 10 \text{ Hz, J}^\text{gem} = -14 \text{ Hz, 1H, } \beta \text{CH}_2), 1.57 (m, 1\text{H, } \gamma \text{CH}), 1.45 (m, 2\text{H, } \beta \text{CH}_2), \\
& \quad 0.83 (d, J = 4 \text{ Hz, 3H, CH}_3), 0.81 (d, J = 4 \text{ Hz, 3H, CH}_3). ^{13}\text{C-NMR} (100\text{MHz, DMSO, TMS}): \delta (\text{ppm}) 173.1, 171.1, 169.4 (3 \text{ x CO}); 137.8 (1\text{C}), 129.6 (2\text{C}), 129.5 (2\text{C}), 128.6 (2\text{C}), 128.5 (2\text{C}), 126.9 (1\text{C}), 126.8 (1\text{C}), (10 \text{x Ar}); 54.6, 53.9, 51.1 (3 \text{ x } \alpha \text{C}); 40.6 (1 \text{ x CH}); 39.2, 37.1 (2 \text{ x } \beta \text{CH}_2); 23.8, 23.3, 21.9 (\gamma \text{CH}, 2 \text{ x CH}_3). \quad \text{ESI-MS: } m/z 426.1 (\text{M+H})^+ \text{ C}_{24}\text{H}_{31}\text{N}_3\text{O}_4 \text{ requires 426.2.}
\end{align*}
\]

HPLC

ESI-MS
H-NMR of LFF

C-NMR of LFF
b. D-Leu-L-Phe-L-Phe

\[
\begin{align*}
\text{H-NMR (400 MHz, DMSO, TMS):} & \quad \delta \text{ (ppm)} 8.69 (d, J = 8 \text{ Hz, 1H, NH}), 8.56 (d, J = 8 \text{ Hz, 1H, NH}) 7.95 (s \text{ (br), 3H, NH}_3^+), 7.27-7.12(m, 10H, Ar), 4.66 (m, 1H, \alpha\text{CH}), 4.42 (m, 1H, \alpha\text{CH}), 3.59 (m, 1H, \alpha\text{CH}), 3.08-3.03 (m, 2H, \beta\text{CH}_2), \\
& \quad 2.90 (dd, J = 8 \text{ Hz, } J_{gem} = -12 \text{ Hz, 1H, } \beta\text{CH}_2), 2.60 (dd, J_{gem} = -12 \text{ Hz, 2H, } \beta\text{CH}_2), 1.13-0.99 (m, 3H, \gamma\text{CH, } \beta\text{CH}_2), 0.63 (d, J = 6 \text{ Hz, 3H, CH}_3), 0.62 (d, J = 6 \text{ Hz, 3H, CH}_3). \\
\text{C-NMR (100MHz, DMSO, TMS):} & \quad \delta \text{ (ppm)} 173.2, 171.6, 169.1 (3 \times \text{ CO}), 138.0 (1C), 129.8 (2C), 129.6 (2C), 128.7 (2C), 128.4 (2C), 127.0 (1C) (10 \times \text{ Ar}), 54.2, 54.1, 51.1 (3 \times \alpha\text{C}); 40.7 (1 \times \text{ CH}); 38.6, 37.0 (2 \times \beta\text{CH}_2); 23.6, 22.9, 22.2 (\gamma\text{CH, 2 x CH}_3). \\
\text{ESI-MS:} & \quad m/z 426.1 (M+H)^+ \text{ C}_{24}\text{H}_{31}\text{N}_{3}\text{O}_4 \text{ requires 426.2.}
\end{align*}
\]

HPLC

[Graph of HPLC analysis showing a sharp peak at around 10 minutes]

ESI-MS

[Graph of ESI-MS analysis showing a peak at m/z 426.1]
1H-NMR of 5LFF

13C-NMR of 5LFF
II- TEM images with negative staining displaying D_LFF short fibers originating from globular structures.

Scale bar = 200 nm.

Cryo-TEM images of D_LFF displaying how a globule responds to laser radiation damage just before disappearance.

Scale bar = 500 nm.

III- Cryo-TEM images showing how globular nuclei of LFF respond to laser radiation damage before disappearance. Scale bar = 500 nm.
IV- Confocal images for Thioflavin T-stained samples of LFF after 7 days. Scale bar = 50 microns.

V- Confocal images for Thioflavin T-stained samples of LFF showing crystal needles aligning into plates. Scale bar = 50 microns.
VI - TEM image with negative staining for LFF on fresh samples. Scale bar = 200 nm.

VII - Cryo-TEM image detail showing globules for LFF superimposed on a crystal plate. Scale bar = 200 nm.
VIII- \(d \) spacings from XRD diffraction analysis

<table>
<thead>
<tr>
<th>(d) spacings (Å)</th>
<th>D LFF</th>
<th>LFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

IX - Theoretical average distances from molecular modelling

D LFF

- molecular length \(\sim 17.4 \text{Å} \)
- central Phe \(\pi-\pi \) stack distance \(\sim 4.2 \text{ Å} \)
- beta-strand distance \(\sim 4.9 \text{ Å} \)
- antiparallel distance \(\sim 10.3-10.5 \text{ Å} \)

LFF

- molecular length \(\sim 13.5 \text{Å} \)
- central Phe \(\pi-\pi \) stack distance \(\sim 4.3 \text{ Å} \)
- beta-strand distance \(\sim 4.2 \text{ Å} \)
- antiparallel distance \(\sim 8.8 \text{ Å} \)