SUPPLEMENTARY SECTION
Enhanced current-rectification in bilayer graphene
with an electrically tuned sloped band gap
Alex Aparecido-Ferreira\textsuperscript{a}, Hisao Miyazaki\textsuperscript{a}, Song-Lin Li\textsuperscript{b},
Katsuyoshi Komatsu\textsuperscript{a}, Shu Nakahara\textsuperscript{c} and Kazuhito Tsukagoshi\textsuperscript{a}

\textsuperscript{a}WPI-MANA, NIMS, Tsukuba 305-0047, Japan
\textsuperscript{b}ICYS-MANA, NIMS, Tsukuba 305-0047, Japan
\textsuperscript{c}GNC, AIST, Tsukuba 305-8569, Japan

1. Device Fabrication:
The bilayer graphene (BLG) flakes were obtained by micromechanical cleavage of Kish graphite, and deposited on a highly doped Si substrate with a 285 nm-thick SiO\textsubscript{2} layer. The flakes were identified by the contrast method of the optical reflection\textsuperscript{1,2}. The patterning of the electrodes and of the graphene channel was performed by electron-beam (e-beam) lithography. For the e-beam lithography, we spin-coated two layers of resist, composed by MMA (8.5) copolymer and 950k-PMMA (both supplied by Nano\textsuperscript{TM} MicroChem). The resists were developed with a 1:3 mixture of MiBK (Sigma-Aldrich) and isopropyl alcohol. After e-beam exposure and developing, it was formed an undercut space underneath the top layer resist. The deposition of the metals and patterning of the BLG channel were performed as follows:

1. The source-drain electrodes: Ti (5 nm) and Au (50 nm) were deposited by thermal evaporation of the metal sources.
2. The patterning of BLG channel: an etching by oxygen plasma defined a channel with length about 28 $\mu$m and width about 4.7 $\mu$m.
3. The SiO\textsubscript{2} top-gate electrode: the undercut profile of the resist polymer was fundamental to make the sloped profile of the top-gate. The deposition of the SiO\textsubscript{2} by e-beam followed sequential angle evaporations, as it is showed in Fig. S1(a). The substrate was rotated around a fixed axis, from -20 to 20 degrees, with steps of 4 degrees. For each step, 1 nm of SiO\textsubscript{2} was deposited. Because of partial shading effect due to the undercut space underneath the top resist layer, the sloped SiO\textsubscript{2} top-gate is formed (Fig. S1(b)). The height of the SiO\textsubscript{2} top-
gate and the sloped-side region were determined by non-contact atomic force microscopy (Fig. S1(c)).

4. The AlOₓ top-gate electrode on the BLG and on SiO₂ sloped top-gate: the 60 nm-thick Al layer was deposited by thermal evaporation. According to Miyazaki et al.³⁴⁵, even the surface of Al in contact with the BLG or SiO₂ was oxidized, and the AlOₓ layer on the top of the BLG was used as top-gate contact.

After each deposition of metal, the lift-off process was performed using acetone and isopropyl alcohol.

![Fig. S1: Deposition method of the SiO₂ top-gate.](image)

Fig. S1: (a) Deposition method of the SiO₂ top-gate. The deposition angle was changed from -20 to 20 degrees in steps of 4 degrees. (b) Schematic figure showing the undercut space underneath the top layer resist and the formation of the sloped SiO₂ top-gate (c) AFM image of the sloped SiO₂ top-gate electrode, showing the height and the sloped side region.

2. The widening of the insulating region between p and n regions in sloped junctions:

According to our previous report by Miyazaki et al.⁴, in the gate-controllable pn junctions, the depletion region is neutrally charged. This occurs due to a transient region around the pn interface where the top electrical field changes from an $E_{tn}$ to $E_{tp}$.
value. Usually, the transient region width determines the depletion region\textsuperscript{4}. In case of an abrupt junction, the top-gate electrical fields changes abruptly in the interface, leading to a narrow transient region.

For sloped junctions, the top-electrical field changes smoother between $p$ and $n$ areas. The transient region is larger than in the abrupt junction, and the charge concentration is zero at a larger range around the $pn$ interface, leading to a wider depletion region in sloped junctions.

References: