Supporting Information

Vapor-liquid equilibrium phase diagrams of the CO\textsubscript{2}/methanol, CO\textsubscript{2}/ethanol and CO\textsubscript{2}/water systems at 45 °C

1. Equations of State

In this work, the Stryjek and Vera modification of the Peng-Robinson equation of state (PRSV-EoS)[1] are applied to represent the VLE of the binary systems involving carbon dioxide, methanol, ethanol and water at 45 °C and different pressures.

PR-EoS is of the form

\[P = \frac{RT}{v-b} \left(\frac{a(T)}{v^2 + 2bv - b^2} \right) \] \hspace{1cm} \text{(1)}

where \(T, P \) and \(v \) are the temperature, pressure and molar volume. Parameters \(a \) and \(b \) are given by

\[a_i = 0.457235 \left(\frac{RT_{ci}}{P_{ci}} \right)^2 \left[1 + \kappa_i \left(1 - \frac{T}{T_{ci}} \right) \right]^2 \] \hspace{1cm} \text{(2)}

\[b_i = 0.077796 \frac{RT_{ci}}{P_{ci}} \] \hspace{1cm} \text{(3)}

For the PR-EoS, the \(\kappa_i \) term has the form

\[\kappa_i = 0.37464 + 1.54226\omega_i - 0.26992\omega_i^2 \] \hspace{1cm} \text{(4)}

where \(\omega \) is Pitzer’s acentric factor. For the PRSV-EoS, \(\kappa_i \) is given by

\[\kappa_i = \kappa_{0i} + \kappa_i \left(1 + \sqrt{\frac{T}{T_{ci}}} \right) \left(0.7 - \frac{T}{T_{ci}} \right) \] \hspace{1cm} \text{(5)}

with

\[\kappa_{0i} = 0.378893 + 1.4897153\omega_i - 0.17131848\omega_i^2 + 0.0196554\omega_i^3 \] \hspace{1cm} \text{(6)}
For mixtures, the Panagiotopoulous-Reid mixing rules are used,

\[a = \sum_{i} \sum_{j} x_i x_j (a_i a_j)^{1/2} \left[1 - k_{ij} + (k_{ij} - k_{ji}) x_i \right] \]

(7)

\[b = \sum_{i} \sum_{j} x_i x_j \left(\frac{b_i + b_j}{2} \right) \]

(8)

Table 1 gives the pure component parameters, \(T_c, P_c, \omega_i, \) and \(k_1. \)

<table>
<thead>
<tr>
<th>Compound</th>
<th>(T_c) (K)</th>
<th>(P_c) (MPa)</th>
<th>(\omega)</th>
<th>(k_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>304.21</td>
<td>7.382</td>
<td>0.225</td>
<td>0.04285</td>
</tr>
<tr>
<td>Methanol</td>
<td>512.64</td>
<td>8.097</td>
<td>0.565</td>
<td>-0.16816</td>
</tr>
<tr>
<td>Ethanol</td>
<td>513.92</td>
<td>6.148</td>
<td>0.644</td>
<td>-0.03374</td>
</tr>
<tr>
<td>Water</td>
<td>647.29</td>
<td>22.09</td>
<td>0.344</td>
<td>-0.06635</td>
</tr>
</tbody>
</table>

2. Calculation method

For a multicomponent system, the VLE is obtained equating the fugacities of each component in the vapor phase and in the liquid phases:

\[f_i^V(P,T) = f_i^L(P,T) \]

(9)

\[\varphi_i^V y_i P = \varphi_i^L x_i P \]

where \(\varphi_i \) is the fugacity coefficient of component \(i \) (1=CO\(_2\)), that is easily obtained from the equation of state. For each phase,

\[\sum_{i=1}^{N} y_i = 1; \sum_{i=1}^{N} x_i = 1 \]

(10)

where \(N \) is the number of components. For the binary systems VLE data were used to correlate the cross interaction parameters \(k_{ij} \) and \(k_{ji}. \) The Simplex optimization method was used for the parameter regression using the objective function
\[F = \sum_{j=1}^{n} \left[0.6 \times (x_{i,j}^{\text{exp}} - x_{i,j}^{\text{cal}})^2 + 0.4 \times (y_{i,j}^{\text{exp}} - y_{i,j}^{\text{cal}})^2 \right] \] (11)

where \(n \) is the number of the experimental data points. The temperature dependence of the interaction parameters was required because different experimental data were used under various temperatures; typically, they are expressed by linear relationships,

\[
k_{ij} = c_{ij} + d_{ij} T \quad k_{ji} = c_{ji} + d_{ji} T
\] (12)

3. Results of the three binaries

Figure 1 compares the calculated VLE data at 45 °C with the parameters listed in Table 2. Figure 1a shows a critical pressure of 10.8 MPa with the CO\(_2\) molar fraction of 0.882 for the CO\(_2\)(1)/methanol (2) mixture at 45 °C, therefore, the system is supercritical fluid when the pressure is larger than 10.8 MPa and CO\(_2\) molar fraction larger than 0.882. Figure 1b also indicates a critical pressure of 10.5 MPa with the CO\(_2\) molar fraction of 0.903 for the CO\(_2\)/ethanol system at 45 °C, suggesting the system is supercritical fluid when the pressure is larger than 10.5 MPa and CO\(_2\) molar fraction larger than 0.903. Yet Figure 1c reveals that the CO\(_2\)/water system does not appear supercritical fluid with vapor-liquid two phases at 45 °C and pressures up to 20 MPa.

<table>
<thead>
<tr>
<th>System</th>
<th>(k_{ij})</th>
<th>(c_{ij} \times 10^4)</th>
<th>(k_{ji})</th>
<th>(c_{ji} \times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)(1)/methanol(2)</td>
<td>-0.1776</td>
<td>7.543</td>
<td>0.000002466</td>
<td>2.243</td>
</tr>
<tr>
<td>CO(_2)(1)/ethanol(2)</td>
<td>-0.02512</td>
<td>4.488</td>
<td>0.003956</td>
<td>2.714</td>
</tr>
<tr>
<td>CO(_2)(1)/water(2)</td>
<td>-0.4832</td>
<td>12.02</td>
<td>0.1729</td>
<td>1.098</td>
</tr>
</tbody>
</table>

† Binary interaction parameters obtained from [2]; †† Binary interaction parameters correlated with VLE data from [3] (290K-330K).

According to the added CO\(_2\), the estimated molar fractions of CO\(_2\) are 0.92 and 0.89, respectively, for 1ml ethanol and 1ml methanol in a high-pressure
visual vessel (the overall volume is about 12 ml), therefore, for the both cases, the mixtures are in supercritical state as watched by the visual vessel.

Literature Cited

Figure S1. Topographic images of PS-b-P4VP thin film spun-cast using toluene and subsequent thermal annealing at 130 °C for 60 h.

Figure S2. XPS core level scans for C1s and N1s of PS-b-P4VP films before (dotted line) and after (solid line) the CO2/methanol process.
Figure S3. Photographs of water droplets placed on the PS-b-P4VP films: (a) the as-cast film (the contact angle = 102.7°); (b) the processed film (the contact angle = 51.2°) at 20 MPa, 45 °C for 0.5 h.

Figure S4. The 638 nm excited Raman spectra of porous PPy film.

Figure S5. SEM image of a platinum replica of the nanoporous PS-b-P4VP film obtained by a CO₂/methanol
Figure S6. Reversible ammonia gas sensing performance of porous PPy film-1 (Sample 1).