Near-Infrared Light Controlled Photocatalytic Activity of Carbon Quantum Dots for Highly Selective Oxidation Reaction Haitao Li, Ruihua Liu, Suoyuan Lian, Yang Liu, Hui Huang, Zhenhui Kang* ## **Supporting Information** ## 1. Figures Figure S1 (a) TEM image of CQDs, inset is the HRTEM image; (b) SEM image of CNPs. **Figure S2**. Reaction between hydroxyl radicals and terephthalate yielding one intensely fluorescent mono-hydroxylated isomer. Figure S3 The wavelength distribution of light after filtered by Schott optical filter RG780. **Figure S4**. The ESR signals of the DMPO-•OH (aqueous solution) adducts for CQDs/H₂O₂ system under NIR light irradiation. [CQDs]=4 mg/50 mL; [H₂O₂]= 10mM; [DMPO]=40mM. **Figure S5** Cyclic voltammograms of the CQDs/ITO electrode in 0.05 M (pH 7.4) phosphate buffer and in the presence of 15 mM of H_2O_2 under NIR light irradiation or not. ## 2.Table **Table S1** Selective oxidation of alcohols to aldehydes and ketones without NIR light irradiation and CQDs catalyst. [a] | Entry | Reactants | Products | Conv.
[%] | |-------|--------------------------------------|------------------------|--------------| | 1 | CH₂OH | СНО | 21 | | 2 | CI CH ₂ OH | СНО | 18 | | 3 | CH ₂ OH | СНО | 22 | | 4 | H ₃ C CH ₂ OH | н ₃ С СНО | 20 | | 5 | O ₂ N CH ₂ OH | O ₂ N CHO | 17 | | 6 | H ₃ OC CH ₂ OH | H ₃ OC CHO | 25 | | 7 | OH
C-CH ₃ | о
С-сн ₃ | 16 | | 8 | 0
C-O-CH ₂
OH | о Ё-о-сно | 21 | [[]a] 10 mmol alcohol, H_2O_2 (10 mmol, 30 wt% in water), no catalyst, 60° C, 12 h without NIR light irradiation. H_2O_2 was added continuously over 12 h. **Table S2.** Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes in the presence of CQDs and H_2O_2 under irradiation with NIR light after three cycles.^[a] | Entry | Reactants | Products | Conv. [%] | Sel.
[%] | |-------|--------------------------------------|------------------------|-----------|-------------| | 1 | CH ₂ OH | СНО | 90 | 100 | | 2 | CI CH ₂ OH | CICHO | 84 | >99 | | 3 | F CH ₂ OH | F CHO | 89 | >98 | | 4 | H ₃ C CH ₂ OH | H ₃ C CHO | 87 | >98 | | 5 | O ₂ N CH ₂ OH | O ₂ N CHO | 86 | >99 | | 6 | H ₃ OC CH ₂ OH | H ₃ OC CHO | 86 | >99 | | 7 | OH
C-CH ₃ | O
C-CH ₃ | 87 | >96 | | 8 | O
C-O-CH ₂
OH | C-O-CHO | 87 | >99 | $^{^{[}a]}$ 10 mmol alcohol, H_2O_2 (10 mmol, 30 wt% in water), 8 mg CQDs catalyst, 60°C, followed by NIR irradiation for 12 h. H_2O_2 was added continuously over 12 h.