Electronic Supplementary Information for:

Heterostructured Ag₃PO₄/AgBr@Ag Plasmonic Photocatalyst with Enhanced Photocatalytic Activity and Stability under Visible Light

Wan-Sheng Wang, Hong Du, Rui-Xia Wang, Tao Wen, An-Wu Xu*

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

Figure S1. SEM images of the obtained Ag₃PO₄/AgBr/Ag using the different concentration of NaBr solution. (a) 0.3 mM, (b) 3 mM, (c) 30 mM, (d) 0.3 M.
Figure S2 SEM images of the obtained Ag₃PO₄ (a) and Ag₃PO₄/AgBr/Ag (b) and corresponding EDS patterns of cubic Ag₃PO₄ crystals (c) and Ag₃PO₄/AgBr/Ag heterostructures (d) taken from a red circle.

Figure S3 The survey XPS spectra of Ag₃PO₄/AgBr/Ag.
Figure S4 Typical UV-Vis spectrum of Ag nanoparticles.

Figure S5 Typical UV-vis spectral changes of (a) MO and (b) MB aqueous solutions in the presence of Ag₃PO₄/AgBr/Ag heterostructures under visible-light irradiation.
Figure S6 Photocatalytic degradation reaction kinetics of (a) MO and (b) MB over pure Ag₃PO₄, Ag₃PO₄/AgBr, AgBr/Ag, and Ag₃PO₄/AgBr/Ag, respectively.

Figure S7 The cycling degradation efficiency for MO with cubic Ag₃PO₄ crystals under visible-light irradiation.