Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013

Supplementary Information for:

Rechargeable zinc-air battery using Co$_3$O$_4$ nanoparticle-modified MnO$_2$ nanotubes as air-cathode catalysts

Guojun Du,a,b Xiaogang Liu,a,b,* Yun Zong,a T. S. Andy Hor,a,b Aishui Yu,c and Zhaolin Liua,*

Fax: 65-68720785; Tel: 65-68727532; E-mail: zl-liu@imre.a-star.edu.sg

b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

Tel: 65-65161352; E-mail: chmlx@nus.edu.sg

c Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China
A home-made zinc-air cell device was designed for the battery test. The air electrode was prepared by spraying the catalyst onto a gas diffusion layer (SGL Carbon paper, Germany, 2 cm × 2 cm) to achieve a loading of 2 mg cm⁻². The electrolyte used in the zinc-air battery was 6 M KOH, and a polished zinc plate was used as the anode.

Fig. S1. The photo of the home-made zinc-air cell device.
Fig. S2. XPS spectrum of MnO$_2$/Co$_3$O$_4$ hybrid nanomaterials.

X-ray photoelectron spectroscopy (XPS) was utilized to probe the Mn, Co, O and C elements of the hybrid nanomaterials.
Fig. S3. Power densities of the zinc-air battery using MnO$_2$ nanotubes and MnO$_2$/Co$_3$O$_4$ hybrid nanomaterials as bifunctional air cathode catalysts.

The maximum power density of the MnO$_2$ nanotubes and MnO$_2$/Co$_3$O$_4$ hybrid nanomaterials is 36 and 33 mW/cm2 at 25 °C, respectively.