Supporting Information

for

Ultra-small Fe$_3$O$_4$ nanoparticles decorated graphenes with superior cyclic performance and rate capability

By Yu Chen*, Bohang Song†, Li Lu‡, and Junmin Xue*

*Department of Materials Science and Engineering, †Department of Mechanical Engineering, National University of Singapore, Singapore, 117576

*Corresponding author: msexuejm@nus.edu.sg

Figure S1. Size distribution of Fe$_3$O$_4$ particles (A) before and (B) after annealing.
Figure S2. Thermogravimetric curve of the annealed USIO/G composite.

Figure S3. High resolution XPS spectrum of C1s from GO.

Figure S4. XPS spectrum of Fe2p obtained from USIO/G.
Figure S5. Charge-discharge profiles of the annealed USIO/G composites at first two cycles after current density restored to 1800 mA g$^{-1}$ (corresponding to total cycle numbers of 921st and 922nd).

Figure S6. Cycling performance of pure ultra-small iron oxide (USIO) under different current densities. Red circle: 100 cycle under current density of 100 mA g$^{-1}$. Blue diamond: first 3 cycles at 50 mA g$^{-1}$, subsequent 3 cycles at 100 mA g$^{-1}$, followed by 94 cycles at 500 mA g$^{-1}$.