Supplementary Information

Enhanced Mechanical Strength and Electrical Conductivity of Carbon-Nanotube/TiC Hybrid Fibers

Qinghua Yi, Xiao Dai, Jie Zhao, Yinghui Sun, Yanhui Lou, Xiaodong Su, Qingwen Li, Baoquan Sun, Honghe Zheng, Mingrong Shen, Qinghua Wang and Guifu Zou*

* Corresponding author
§ Equal contribution

Electronic Supplementary Material (ESI) for Nanoscale
This journal is © The Royal Society of Chemistry 2013

Fig. S1 High resolution SEM images of CNT/TiC fiber (Scale bar: 2 μm).
Fig. S2 TEM images of pure CNT (Scale bar: 40 nm).

Fig. S3 The fitting of $\ln \sigma$ vs. $T^{-1/2}$ based on the Mott’s variable range hopping model: $\sigma \propto \exp (-A/T^{(1/(d+1))})$, where σ is electrical conductivity, A is constant, T is the temperature, and d is the dimensionality. As this plot, $d = 1$, that is one dimensional hopping mechanism.
Fig. S4 The fitting of $\ln \sigma$ vs. $T^{-1/3}$ based on the Mott’s variable range hopping model: $\sigma \propto \exp\left(-A/T^{(1/d+1)}\right)$, where σ is electrical conductivity, A is constant, T is the temperature, and d is the dimensionality. As this plot, $d = 2$, that is one dimensional hopping mechanism.

Fig. S5 The fitting of $\ln \sigma$ vs. $T^{-1/4}$ based on the Mott’s variable range hopping model: $\sigma \propto \exp\left(-A/T^{(1/d+1)}\right)$, where σ is electrical conductivity, A is constant, T is the temperature, and d is the dimensionality. As this plot, $d = 3$, that is one dimensional hopping mechanism.