Supplementary Figure 1:

Fig. S1 TEM image of GO in K medium. Before observation, GO in K medium was sonicated.
Fig. S2 Effects of GO exposure on lethality (a) and growth (b) of *C. elegans*. Exposure to GO was performed from L4-larvae for 24-hr (acute exposure) or from L1-larvae to adult (prolonged exposure). Bars represent means ± S.E.M. **p < 0.01.**
Fig. S3 Effects of GO exposure on lifespan of *C. elegans*. Exposure to GO was performed from L4-larvae for 24-hr (acute exposure) or from L1-larvae to adult (prolonged exposure).
Supplementary Figure 4:

Fig. S4 Transgenerational effects of prolonged GO exposure on growth of *C. elegans.* Prolonged exposure to GO was performed from L1-larvae to adult. F1 and F2 progeny nematodes were cultured on normal NGM plates. Bars represent means ± S.E.M. **p < 0.01.**
Research Paper; Submitted to “Nanoscale”

Supplementary Table 1:

Table S1. Information on genes required for oxidative stress control in *C. elegans*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Products of the genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sod-1</td>
<td>copper/zinc superoxide dismutase</td>
</tr>
<tr>
<td>sod-2</td>
<td>manganese - superoxide dismutase</td>
</tr>
<tr>
<td>sod-3</td>
<td>manganese - superoxide dismutase</td>
</tr>
<tr>
<td>sod-4</td>
<td>copper/zinc superoxide dismutase</td>
</tr>
<tr>
<td>sod-5</td>
<td>copper/zinc superoxide dismutase</td>
</tr>
<tr>
<td>isp-1</td>
<td>“Rieske” iron-sulfur protein</td>
</tr>
<tr>
<td>mev-1</td>
<td>a subunit of the enzyme succinate dehydrogenase cytochrome b</td>
</tr>
<tr>
<td>gas-1</td>
<td>subunit of mitochondrial complex I</td>
</tr>
<tr>
<td>clk-1</td>
<td>ubiquinone biosynthesis protein COQ7</td>
</tr>
<tr>
<td>ctl-1</td>
<td>catalase</td>
</tr>
<tr>
<td>ctl-2</td>
<td>catalase</td>
</tr>
<tr>
<td>ctl-3</td>
<td>catalase</td>
</tr>
</tbody>
</table>
Table S2 Association of intestinal ROS production with the toxicity from prolonged exposure to GO in *C. elegans*

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent variable</th>
<th>R^2</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal ROS production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body length</td>
<td></td>
<td>0.827</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Brood size</td>
<td></td>
<td>0.839</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Body bend</td>
<td></td>
<td>0.810</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Head thrash</td>
<td></td>
<td>0.929</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Intestinal autofluorescence</td>
<td></td>
<td>0.966</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
Supplementary Table 3:

Table S3. Information on genes required for intestinal development in *C. elegans*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Products of the genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>gem-4</td>
<td>Ca(^{2+})-dependent phosphatidylserine binding protein</td>
</tr>
<tr>
<td>mtm-6</td>
<td>myotubulin lipid phosphatase orthologous</td>
</tr>
<tr>
<td>nhx-2</td>
<td>sodium/proton exchanger</td>
</tr>
<tr>
<td>opt-1</td>
<td>high-affinity, proton-coupled oligopeptide transporter</td>
</tr>
<tr>
<td>pkc-3</td>
<td>atypical protein kinase</td>
</tr>
<tr>
<td>par-3</td>
<td>PDZ domain-containing protein orthologous</td>
</tr>
<tr>
<td>par-6</td>
<td>PDZ-domain-containing protein</td>
</tr>
<tr>
<td>pgp-1</td>
<td>transmembrane protein</td>
</tr>
<tr>
<td>pgp-3</td>
<td>transmembrane protein</td>
</tr>
<tr>
<td>vha-6</td>
<td>membrane-bound (V0) domain of vacuolar proton-translocating ATPase (V-ATPase);</td>
</tr>
<tr>
<td>gtl-1</td>
<td>TRPM subfamily member of the TRP channel family</td>
</tr>
<tr>
<td>erm-1</td>
<td>ortholog of the ERM family of cytoskeletal linkers</td>
</tr>
<tr>
<td>eps-8</td>
<td>homolog of mouse epidermal growth factor receptor kinase</td>
</tr>
<tr>
<td></td>
<td>substrate</td>
</tr>
<tr>
<td>act-5</td>
<td>ortholog of human cytoplasmic actin</td>
</tr>
<tr>
<td>ifb-2</td>
<td>nonessential intermediate filament protein</td>
</tr>
<tr>
<td>dlg-1</td>
<td>MAGUK protein</td>
</tr>
<tr>
<td>ajm-1</td>
<td>member of the apical junction molecule class</td>
</tr>
<tr>
<td>egl-8</td>
<td>phospholipase C beta homolog</td>
</tr>
<tr>
<td>let-413</td>
<td>protein with strong similarity to human ERBIN, rat DENSIN, Drosophila SCRIB and its human ortholog hSCRIB</td>
</tr>
<tr>
<td>nfm-1</td>
<td>homolog of human merlin/schwannomin (NF2)</td>
</tr>
<tr>
<td>inx-3</td>
<td>gap protein</td>
</tr>
<tr>
<td>nhx-4</td>
<td>sodium/proton exchanger</td>
</tr>
</tbody>
</table>
Research Paper; Submitted to “Nanoscale”

| abts-4 | anion transporter |
Supplementary Table 4:

Table S4. Information on genes required for defecation in *C. elegans*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Products of the genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>unc-16</td>
<td>homolog of murine JIP3 (c-Jun N-terminal kinase (JNK)-interacting protein 3</td>
</tr>
<tr>
<td>unc-33</td>
<td>homolog of murine JIP3 (c-Jun N-terminal kinase (JNK)-interacting protein 3</td>
</tr>
<tr>
<td>unc-44</td>
<td>ankyrin-like protein</td>
</tr>
<tr>
<td>unc-101</td>
<td>adaptin orthologous to the mu1-I subunit of adaptor protein complex 1 (AP-1)</td>
</tr>
<tr>
<td>aex-1</td>
<td>novel, C2 calcium-binding domain protein</td>
</tr>
<tr>
<td>aex-3</td>
<td>guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>aex-5</td>
<td>ortholog of calcium-dependent serine endoproteinases</td>
</tr>
<tr>
<td>cab-1</td>
<td>novel protein with a C-terminal motif weakly homologous</td>
</tr>
<tr>
<td>egl-36</td>
<td>Shaw-type voltage-gated potassium channel</td>
</tr>
<tr>
<td>unc-2</td>
<td>calcium channel alpha subunit</td>
</tr>
<tr>
<td>unc-36</td>
<td>alpha2/delta subunit of a voltage-gated calcium channel</td>
</tr>
<tr>
<td>unc-13</td>
<td>protein that regulates neurotransmitter release</td>
</tr>
<tr>
<td>fat-3</td>
<td>delta-6 fatty acid desaturase (‘linoleoyl-CoA desaturase’)</td>
</tr>
<tr>
<td>egl-30</td>
<td>ortholog of heterotrimeric G protein alpha subunit Gq (Gq/G11 class)</td>
</tr>
<tr>
<td>exp-2</td>
<td>member of the six-transmembrane voltage-activated (Kv-type) family of potassium channels</td>
</tr>
<tr>
<td>unc-43</td>
<td>type II calcium/calmodulin-dependent protein kinase (CaMKII)</td>
</tr>
<tr>
<td>egl-2</td>
<td>voltage-gated potassium channel</td>
</tr>
<tr>
<td>sup-9</td>
<td>TWK (two-P domain K⁺) potassium channel subunits</td>
</tr>
<tr>
<td>sup-10</td>
<td>potassium channel</td>
</tr>
<tr>
<td>unc-93</td>
<td>transmembrane protein</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>unc-25</td>
<td>GABA neurotransmitter biosynthetic enzyme, glutamic acid decarboxylase (GAD)</td>
</tr>
<tr>
<td>lim-6</td>
<td>LIM class homeodomain protein</td>
</tr>
<tr>
<td>unc-47</td>
<td>transmembrane vesicular GABA transporter</td>
</tr>
<tr>
<td>gat-1</td>
<td>electrogenic, Na'/Cl'-coupled, high-affinity GABA transporter</td>
</tr>
<tr>
<td>hlh-8</td>
<td>helix-loop-helix protein</td>
</tr>
<tr>
<td>exp-1</td>
<td>excitatory, cation-selective GABA receptor</td>
</tr>
<tr>
<td>tax-6</td>
<td>ortholog of calcineurin A</td>
</tr>
<tr>
<td>dsc-1</td>
<td>transcription factor CHX10 and related HOX domain proteins</td>
</tr>
<tr>
<td>flr-1</td>
<td>ion channel</td>
</tr>
<tr>
<td>flr-4</td>
<td>predicted Ser/Thr protein kinase</td>
</tr>
<tr>
<td>tri-1</td>
<td>tam3-transposase (Ac family)</td>
</tr>
<tr>
<td>smp-1</td>
<td>semaphorin</td>
</tr>
<tr>
<td>itr-1</td>
<td>putative inositol (1,4,5) trisphosphate receptor</td>
</tr>
<tr>
<td>plc-3</td>
<td>phospholipase C gamma homolog</td>
</tr>
<tr>
<td>vav-1</td>
<td>Rho/Rac-family guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>ced-10</td>
<td>GTPase orthologous to human RAC1</td>
</tr>
<tr>
<td>mig-2</td>
<td>member of the Rho family of GTP-binding proteins</td>
</tr>
<tr>
<td>rho-1</td>
<td>Rho GTPase</td>
</tr>
<tr>
<td>cht-1</td>
<td>ortholog of calreticulin</td>
</tr>
<tr>
<td>shh-1</td>
<td>Scaffold protein Shank and related SAM domain proteins</td>
</tr>
<tr>
<td>elo-1</td>
<td>C-18 polyunsaturated fatty acid (PUFA) elongase</td>
</tr>
<tr>
<td>fat-2</td>
<td>delta-12 fatty acyl desaturase</td>
</tr>
<tr>
<td>dsc-4</td>
<td>subunit of the microsomal triglyceride transfer protein</td>
</tr>
<tr>
<td>tpk-1</td>
<td>Thiamin pyrophosphokinase</td>
</tr>
<tr>
<td>clk-1</td>
<td>ubiquinone biosynthesis protein COQ7</td>
</tr>
<tr>
<td>isp-1</td>
<td>“Rieske” iron-sulfur protein</td>
</tr>
</tbody>
</table>
Table S5. Primers used for quantitative real-time polymerase chain reaction (PCR)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>act-1</td>
<td>CTGCAGATGTGTGACGACGAGGTT</td>
<td>CTGCAGGAAGACACTTGCCTGTTGAAC</td>
</tr>
<tr>
<td>clk-1</td>
<td>CACATACTGCTGCTTCTCTCGT</td>
<td>TGAACCAACAGATGAACCTT</td>
</tr>
<tr>
<td>ctl-1</td>
<td>CTTCCTACACGGACACGCAT</td>
<td>GCAATCTCCCTGGCTTTTCAT</td>
</tr>
<tr>
<td>ctl-2</td>
<td>CGAACAGCTTCAACTATGG</td>
<td>GTGGCTGGAATGTGGTAT</td>
</tr>
<tr>
<td>ctl-3</td>
<td>TTTCCTCTACACGGACACGC</td>
<td>GCAATCTCCCTGGCTTTTCAT</td>
</tr>
<tr>
<td>gas-1</td>
<td>CTGGTCTTCTTGGCTTGA</td>
<td>CTTGGTCTTGGCTTGA</td>
</tr>
<tr>
<td>isp-1</td>
<td>GCAGAAAGATGAATGGTCC</td>
<td>CAGAAGGCTGCTAGTGAGA</td>
</tr>
<tr>
<td>mev-1</td>
<td>GGAATTCGCTTCTTCTAGA</td>
<td>GCAATCTTCTGGCTTTGGA</td>
</tr>
<tr>
<td>sod-1</td>
<td>ACGCTCGTACGGCTTTAC</td>
<td>TCTTCTGCGCTTCTCCG</td>
</tr>
<tr>
<td>sod-2</td>
<td>GCATCAACTGCTGCTGT</td>
<td>ACAAGTCCAGTTGGTGC</td>
</tr>
<tr>
<td>sod-3</td>
<td>TGACATCACTATGGCGGT</td>
<td>GGGACCATTTCCCTCAAAA</td>
</tr>
<tr>
<td>sod-4</td>
<td>CACCAGATGACTGGAACACA</td>
<td>AATGAGGGCAGAGAGATCG</td>
</tr>
<tr>
<td>sod-5</td>
<td>ATATTGGCAATGCCGGTTC</td>
<td>CTTTCACCTCCGGCTTTT</td>
</tr>
<tr>
<td>gem-4</td>
<td>CACGCTGCTGACAGCTAT</td>
<td>TTGTATTGGGCACCTTTC</td>
</tr>
<tr>
<td>mtm-6</td>
<td>AAAAGGGACGCTAACCAGC</td>
<td>ATTCTTAAACGGAAGCAG</td>
</tr>
<tr>
<td>nhx-2</td>
<td>GAGACAGATGATGTAAGAA</td>
<td>GTGGCGGAAAGTAGATAAA</td>
</tr>
<tr>
<td>opt-1</td>
<td>TGATGTCCGTTCCCTACT</td>
<td>ATGACCTGAAAGAGTGGG</td>
</tr>
<tr>
<td>pho-1</td>
<td>ACGGACATGATGTAGGAG</td>
<td>ATTAGAAGTGCGGAGAAG</td>
</tr>
<tr>
<td>pkc-3</td>
<td>CGTCTCCGACATCATAG</td>
<td>CAACTCCGTCTCTTGACT</td>
</tr>
<tr>
<td>par-3</td>
<td>AAGCGTAAACCTGCAACCA</td>
<td>CCGTCTAACATCCCTCC</td>
</tr>
<tr>
<td>par-6</td>
<td>ATTTCTGCGTCTGGTGCT</td>
<td>TCCCCTCACCATGGTTAT</td>
</tr>
<tr>
<td>pgp-1</td>
<td>AATGTCCGATGTTGCTTAC</td>
<td>CTCAGGGTCTCAACGTCTT</td>
</tr>
<tr>
<td>pgp-3</td>
<td>GGAATTCCTGACGGTTAC</td>
<td>TTTGATGGGCTTTCTTCT</td>
</tr>
<tr>
<td>vha-6</td>
<td>ATGGAGGGCAAAACTTAGAG</td>
<td>TTCCGAGATTGACATAGC</td>
</tr>
<tr>
<td>gtl-1</td>
<td>CTGCTCAACCACGCAAAAT</td>
<td>AACTCCTTCATCACAACCC</td>
</tr>
<tr>
<td>Gene</td>
<td>Forward Sequence</td>
<td>Reverse Sequence</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>erm-1</td>
<td>TCCACGACTCCGTATCAA</td>
<td>TCCTGCTCGGCAATCTTA</td>
</tr>
<tr>
<td>eps-8</td>
<td>ACGCAGTGACGGTGAGAAG</td>
<td>AGGGATACACGGATACA</td>
</tr>
<tr>
<td>act-5</td>
<td>GGGAGTGATGGTCGGTAT</td>
<td>CGGTAAGGAGAACGTTG</td>
</tr>
<tr>
<td>ifb-2</td>
<td>TCAAGGCTGAATACGACA</td>
<td>TCCAAAGCAGAGTTAC</td>
</tr>
<tr>
<td>dgl-1</td>
<td>TTGAACGGCGTAAAGAT</td>
<td>CGTGATGAACCTGTTG</td>
</tr>
<tr>
<td>ajm-1</td>
<td>GTCAATCAGTTCTGCCCG</td>
<td>ACTCGTCGGATGTTCT</td>
</tr>
<tr>
<td>egl-8</td>
<td>GCTCGATGGCTTCAAGTA</td>
<td>TGAATGCTATCCCTCTG</td>
</tr>
<tr>
<td>let-413</td>
<td>TTTCGCTCCAACAAGTTAC</td>
<td>CACCAAGAAATGCTCCT</td>
</tr>
<tr>
<td>nfm-1</td>
<td>ATTACGGAGGATCTGGTA</td>
<td>TCATCGTCGTAACCTTAT</td>
</tr>
<tr>
<td>inx-3</td>
<td>CAGTGATGCTCATTGGTG</td>
<td>GACCGTATTGCTCTTG</td>
</tr>
<tr>
<td>nhx-4</td>
<td>GAAGATTTGCTACCTGGAC</td>
<td>TCATAAGTGGGTGTTCTCT</td>
</tr>
<tr>
<td>abts-4</td>
<td>CTCAGACTACAGGGATGG</td>
<td>GTGCCCTAGTCACAGCAGAC</td>
</tr>
<tr>
<td>unc-16</td>
<td>CTCGTTGCTGATCTCACA</td>
<td>GCCTTATATCTCCTCTCT</td>
</tr>
<tr>
<td>unc-33</td>
<td>CTCCCTGACAGACGATGAA</td>
<td>CAGACTCCGCTAACCTTAA</td>
</tr>
<tr>
<td>unc-44</td>
<td>TCCAGACGGATCAGTTA</td>
<td>ATCCACGTTTGTTACCT</td>
</tr>
<tr>
<td>unc-101</td>
<td>CGGAAATTTGTTGGAAGCG</td>
<td>CGGGGCGTGATAGAGAAGA</td>
</tr>
<tr>
<td>aex-1</td>
<td>TGGAGCAAGAAGACACT</td>
<td>GCAGATCTCCGATAACCT</td>
</tr>
<tr>
<td>aex-3</td>
<td>ATTACTGGGCGATGGGTG</td>
<td>TGCCGAAAGGATGAGAT</td>
</tr>
<tr>
<td>aex-5</td>
<td>AATGTGCTGATGGGTAG</td>
<td>GCAATGCTCAGTTAA</td>
</tr>
<tr>
<td>cab-1</td>
<td>AATGCGCGCTGTCAAGGAT</td>
<td>GTCTGACATCGACTTTCG</td>
</tr>
<tr>
<td>egl-36</td>
<td>TCCAGATCCAATGTATCG</td>
<td>CTCTAAACCCTCCTCGT</td>
</tr>
<tr>
<td>unc-2</td>
<td>CAACGCTCAGAATCTCAC</td>
<td>ATCGAAACTCGGAAATGG</td>
</tr>
<tr>
<td>unc-36</td>
<td>CTCCGCCACTTATGTCCTCC</td>
<td>TCTTCAACTCGGCTTTC</td>
</tr>
<tr>
<td>unc-13</td>
<td>AGTGAGCGCGCTTTCTTAT</td>
<td>AAATCCTCCAACCTTTCA</td>
</tr>
<tr>
<td>fat-3</td>
<td>ACTCATCAGCCTGCCACA</td>
<td>TACCCAAGCCTCAGGTCC</td>
</tr>
<tr>
<td>egl-30</td>
<td>AAGAGCTATGGGAGGATT</td>
<td>CACGAGGACATGATGGA</td>
</tr>
<tr>
<td>exp-2</td>
<td>GCGGCATATTGGTGAGTTG</td>
<td>TGCTGCTTTTGCTGTTG</td>
</tr>
<tr>
<td>unc-43</td>
<td>ATGGGACAGTTGCTATTG</td>
<td>TGCTGCGTGAAGATGAGT</td>
</tr>
<tr>
<td>egl-2</td>
<td>CCTATTTGGCTTCTTTGTC</td>
<td>TGTAGATCCTCCTGTTTCG</td>
</tr>
<tr>
<td>Gene</td>
<td>Forward Sequence</td>
<td>Reverse Sequence</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>sup-9</td>
<td>GAAGATGAAAGGAGGAGGAT</td>
<td>CTTTCTGTGACGTTGTCG</td>
</tr>
<tr>
<td>sup-10</td>
<td>TTACCGACAAGCAGTTTC</td>
<td>CAAGATGGCTAGGACAC</td>
</tr>
<tr>
<td>unc-93</td>
<td>ACTACTTGTGCAGTTTGA</td>
<td>AAATACTTTGGGCTCCTC</td>
</tr>
<tr>
<td>unc-25</td>
<td>CGGCTCAACTGTCTACGG</td>
<td>TGGGAAAGTGCTCCCATG</td>
</tr>
<tr>
<td>lim-6</td>
<td>GTTCTGGTGTGTTGTTGTC</td>
<td>ATAGCATTTTGATGTCGT</td>
</tr>
<tr>
<td>unc-47</td>
<td>TGGTCAAGGCTCCTCTAT</td>
<td>TTTCACAAATCCCATG</td>
</tr>
<tr>
<td>gat-1</td>
<td>AAATGTGAAGCAGGAGTGA</td>
<td>AACTCGTCAATGATAGCG</td>
</tr>
<tr>
<td>hlh-8</td>
<td>ACTCAAGGACAAAGGAAAC</td>
<td>TGAAGCAGCCAGTAAAT</td>
</tr>
<tr>
<td>exp-6</td>
<td>TGGAAAGATGGCAAGAGC</td>
<td>CTGTTGTGACGGAAAT</td>
</tr>
<tr>
<td>dsc-1</td>
<td>GTATACCGGATAGGTTT</td>
<td>GATGCTCCTGTAGCCTTG</td>
</tr>
<tr>
<td>flr-1</td>
<td>TCACCGACTTGTTGAGAAT</td>
<td>TGGTGGTTCAGAGGTTTA</td>
</tr>
<tr>
<td>flr-4</td>
<td>TCCACCAGTATCCATCG</td>
<td>CAGAACCTCAGGACAC</td>
</tr>
<tr>
<td>iri-1</td>
<td>AATTACCAGGACAGCCTAA</td>
<td>GAAAGTCGTCGTGTCAAAA</td>
</tr>
<tr>
<td>smp-1</td>
<td>CTTCAATGATGCTCTTAT</td>
<td>CTTCTCCTTGGCTGTTT</td>
</tr>
<tr>
<td>itr-1</td>
<td>ATGGCATGCGTCTTTATGT</td>
<td>GAATCGATGTGGTTTT</td>
</tr>
<tr>
<td>plc-3</td>
<td>GTCATCTACGGGCTCCT</td>
<td>TCTATCGGCAACTCTTA</td>
</tr>
<tr>
<td>vav-1</td>
<td>GTAATGGAGGATGTCCTGC</td>
<td>TAGACGTTCGTAGTTT</td>
</tr>
<tr>
<td>ced-10</td>
<td>ATAAATCTCGGGCTCTGG</td>
<td>AGCACCAGTACCTGCT</td>
</tr>
<tr>
<td>mig-2</td>
<td>ACAATGTGGCAAGCAGAAT</td>
<td>TTTCCGATGAAAGGAAAT</td>
</tr>
<tr>
<td>rho-1</td>
<td>ATTAAGGGTGCAGGAAAG</td>
<td>TAATCGGAAACATGGAG</td>
</tr>
<tr>
<td>crt-1</td>
<td>CTGGGGAGGTTGATACGT</td>
<td>GTGAGGTGATGAGGAG</td>
</tr>
<tr>
<td>shn-1</td>
<td>AGGAGGAAAGGTGAACGGG</td>
<td>GTGGAACGAGCCTAGAAT</td>
</tr>
<tr>
<td>elo-1</td>
<td>CCTTTCTTGCTACCTTG</td>
<td>TTGGCAGCTGCTGTAG</td>
</tr>
<tr>
<td>fat-2</td>
<td>ACATTGCCTTTGCTCTCT</td>
<td>TGGCATAGTTGGTTTT</td>
</tr>
<tr>
<td>dsc-4</td>
<td>GGTATTGCTCTCTATCCTCA</td>
<td>GAATCGTGAGTCATCC</td>
</tr>
<tr>
<td>tpk-1</td>
<td>TAACGGTGAACCTACGGC</td>
<td>TACGGCAGATGGACAGT</td>
</tr>
<tr>
<td>clk-1</td>
<td>GTGTCGGTCAGCACTTC</td>
<td>GAGCCTTATCCATCGT</td>
</tr>
<tr>
<td>isp-1</td>
<td>GTACCAAGGGCTGAGATG</td>
<td>CAGAACGTCGTAGGAG</td>
</tr>
</tbody>
</table>