In-situ Nitrogenated Graphene – Few Layer WS$_2$ Composites for Fast and Reversible Li$^+$ Storage

Dongyun Chen,a Ge Ji,a Bo Ding,a Yue Ma,a Baihua Qu,a Weixiang Chenb and Jim Yang Lee*,a

a Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore

b Department of Chemistry, Zhejiang University, Hangzhou, 310027, China

Supporting Information

Figure S1 TEM images of WS$_2$-graphene composites synthesized by the reflux (a) and hydrothermal (b) methods.
Figure S2 Element maps of nitrogen, tungsten, sulfur and carbon of a WS$_2$-graphene composite prepared by the reflux method.

Figure S3 Element maps of nitrogen, tungsten, sulfur and carbon of WS$_2$-NGC2 composite prepared by the hydrothermal method.
Figure S4 Coulombic efficiencies of WS$_2$-NGC1, WS$_2$-NGC2 and WS$_2$-NGC5 cycled at 100 mA·g$^{-1}$.

Figure S5 Coulombic efficiencies of WS$_2$-NGC2 cycled at different current densities.