Electronic Supplementary Information

Hybrid Ternary Rice Paper–Manganese Oxide–Carbon Nanotube–Composite for Flexible Supercapacitors

† School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459

*chenyuan@ntu.edu.sg

Figure S1. Primary and secondary hydroxyl groups on cellulose fibers.

Figure S2. Surface water wettability comparison between (a) regular printing paper (Paperone premium copier, APRIL group, 80 g/m²) and (b) rice paper (Shanghai deligao stationery Co., Ltd.). Rice paper shows much better water wettability.
Figure S3. Cyclic voltammetry curves of two-electrode supercapacitors fabricated using SWCNT–paper, MnO₂–SWCNT–paper and SWCNT–MnO₂–paper composites at the scan rate of 10, 50 and 100 mV/s.

Figure S4. (a) Galvanostatic charge-discharge curves of the two-electrode supercapacitors fabricated using SWCNT–MnO₂–paper composites at the current density of 0.5, 1, 2 and 5 A/g. (b) The gravimetric specific capacitance of the two-electrode EC at different current density.
Figure S5. Thermogravimetric analysis profiles of the SWCNT–MnO₂–paper composites synthesized at different MnO₂ deposition temperature from 25 to 100 °C. The insert shows the increase of MnO₂ loading with the increase of deposition temperature.
Figure S6. TEM images of MnO₂ deposited on cellulosic fibers of rice paper at different temperatures: 25, 60, 80, and 100 °C.
Figure S7. Photographs of the assembled rectangular shape supercapacitors fabricated using SWCNT–MnO₂–paper composites under different bending test conditions. (a) flat, (b) bending at 90°, and folding of 180°.

Video: Folding and bending of the SWCNT–MnO₂–paper composites.